J. DIFFERENTIAL GEOMETRY 9 (1974) 475-482

ON CHERN'S KINEMATIC FORMULA IN INTEGRAL GEOMETRY

ALBERT NIJENHUIS

Dedicated to S. S. Chern on his 60th birthday

1. Introduction

In 1939 Hermann Weyl [1] derived a formula for the volume of the tube of radius ρ about a compact manifold (without boundary) imbedded in a Euclidean space. The expression for this volume, for a manifold X of dimension k imbedded in a Euclidean *n*-space E^n is a polynomial $V(T_{\rho}^{(n)}(X))$ in ρ , valid for small ρ , when no self-intersections in the normal bundle occur. The coefficients of this polynomial are integrals over X of invariant polynomial functions of the Riemann-Chistoffel curvature tensor. The polynomial expression for the volume is of the form

(1.1)
$$V(T_{\rho}^{(n)}(X)) = \sum \gamma_{n,k,e} \mu_e(X) \rho^{n-k-e} ,$$

where the summation extends over all even values of e such that $0 \le e \le k$. The $\mu_e(X)$ are the integral invariants referred to, while the $\gamma_{n,k,e}$ depend only on their subscripts and not on more subtle geometric properties of X. Thus γ and μ are uniquely determined up to a factor which depends on k and e. In what follows we add a superscript (1) to μ when quoting others.

In 1966 S. S. Chern [2] studied the same μ 's from the point of view of the kinematic formula. Let M^p and M^q be compact manifolds of dimensions p and q imbedded in E^n , and let g be an element of the group of isometries in E^n . Then, for almost all $g, M^p \cap gM^q$ is again a manifold, and the $\mu_e^{(1)}(M^p \cap gM^q)$ are meaningful quantities. The kinematic formula of Chern deals with the integral $\int \mu_e^{(1)}(M^p \cap gM^q)d^{(1)}g$, where the integration extends over the group of isometries, and $d^{(1)}g$ is the Haar measure on this group, i.e., the product of the measure on E^n and that on the orthogonal group in n dimensions, the latter being a product of measures on spheres. This integral, according to Chern's theorem, is expressible as follows:

Communicated September 17, 1973. Research partially supported by an N.S.F. grant at the University of Pennsylvania.