THE EQUIVARIANT COVERING HOMOTOPY PROPERTY FOR DIFFERENTIABLE G-FIBRE BUNDLES

EDWARD BIERSTONE

Let G be a compact Lie group, and X a differentiable G-manifold. If $p: E \to X$ is a differentiable fibre bundle, and G acts differentiably on E so that each $g \in G$ operates as a bundle map, then we call p a differentiable G-fibre bundle. We show that if p is a differentiable G-fibre bundle with Lie structure group or compact fibre, then it has the equivariant covering homotopy property. This generalizes the fact that a differentiable family of actions of a compact Lie group on a compact differentiable manifold is locally trivial.

We give some basic definitions in § 1, and in § 2 show that if X is a Gmanifold and $E \to X$ a differentiable fibre bundle with Lie structure group Hand associated principal bundle $P \to X$, then differentiable actions of G on E as a group of bundle maps are in natural one-one correspondence with such actions on P. In § 3 we establish the equivariant covering homotopy property for differentiable G-fibre bundles with compact Lie structure group, and show that if $p: E \to X$ is a differentiable G-fibre bundle with connected semi-simple Lie structure group H, then p can be reduced to a compact subgroup of H so that G still operates as a group of bundle maps, and hence p also has the equivariant covering homotopy property. Then in § 4 we define a notion of equivariant local triviality for G-fibre bundles, which implies the equivariant covering homotopy property, and show that any differentiable G-fibre bundle with Lie structure group or compact fibre is G-locally trivial. We conclude with some remarks relating G-local triviality to the equivalence of nearby differentiable actions of a compact Lie group.

The author is happy to acknowledge the generous advice of his thesis advisor, Richard S. Palais, and also some helpful conversations with Arthur G. Wasserman.

1. Basic definitions

Let G be a topological group. A G-space is a Hausdorff space X together with a continuous action of G on X, i.e., a continuous map $(g, x) \to gx$ of $G \times X$ into X such that $g_1(g_2x) = (g_1g_2)x$ for all $g_1, g_2 \in G, x \in X$, and 1x = x,

Communicated by R. S. Palais, August 7, 1972. Supported by a postgraduate scholarship of the National Research Council of Canada.