
J . DIFFERENTIAL GEOMETRY
8 (1973) 615-622

THE EQUIVARIANT COVERING HOMOTOPY PROPERTY
FOR DIFFERENTIABLE G-FIBRE BUNDLES

EDWARD BIERSTONE

Let G be a compact Lie group, and X a difϊerentiable G-manifold. If
p: E —> X is a differentiate fibre bundle, and G acts differentiably on E so
that each g e G operates as a bundle map, then we call p a differentiate G-
fibre bundle. We show that if p is a differentiate G-fibre bundle with Lie
structure group or compact fibre, then it has the equivariant covering homotopy
property. This generalizes the fact that a differentiable family of actions of a
compact Lie group on a compact differentiable manifold is locally trivial.

We give some basic definitions in § 1, and in § 2 show that if X is a G-
manifold and E —> X a differentiable fibre bundle with Lie structure group H
and associated principal bundle P —> X, then differentiable actions of G on E
as a group of bundle maps are in natural one-one correspondence with such
actions on P. In § 3 we establish the equivariant covering homotopy property
for differentiable G-fibre bundles with compact Lie structure group, and show
that if p: E —> X is a differentiable G-fibre bundle with connected semi-simple
Lie structure group H, then p can be reduced to a compact subgroup of H so
that G still operates as a group of bundle maps, and hence p also has the
equivariant covering homotopy property. Then in § 4 we define a notion of
equivariant local triviality for G-fibre bundles, which implies the equivariant
covering homotopy property, and show that any differentiable G-fibre bundle
with Lie structure group or compact fibre is G-locally trivial. We conclude with
some remarks relating G-local triviality to the equivalence of nearby differenti-
able actions of a compact Lie group.
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1. Basic definitions

Let G be a topological group. A G-space is a Hausdorff space X together

with a continuous action of G on X, i.e., a continuous map (g, x) —> gx of

G x X into X such that gxig pc) = (gιg2)x for all g l5 g2 e G, x e X, and Ix = x,
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