EXTREMAL SETS OF *p*-TH SECTIONAL CURVATURE

ANN STEHNEY

The object of this paper is to study the pointwise behavior of the *p*-th order sectional curvature function σ of a Riemannian manifold M. At $m \in M, \sigma$ is a real-valued function on the compact Grassmann manifold \mathscr{G} of *p*-planes in the tangent space M_m of M at m. We shall describe the subsets of \mathscr{G} on which σ assumes its maximum and minimum.

We shall work in the setting of an arbitrary inner product space V and arbitrary integer p ($2 \le p \le \dim V$). A p-th curvature operator is a selfadjoint linear transformation $R: \Lambda^p \to \Lambda^p$, where $\Lambda^p = \Lambda^p(V)$ has the inner product induced by that of V. (For example, if $V = M_m$ and p is even, the Riemannian p-th curvature operator R_p as defined by Thorpe [4].) The Grassmann manifold \mathscr{G} of oriented p-planes in V is viewed as a subset of the unit sphere in Λ^p .

For R in the vector space \mathscr{R} of p-th curvature operators, we consider its sectional curvature $\sigma_R : \mathscr{G} \to R$ given by

$$\sigma_{R}(\mathscr{P}) = \langle R(\mathscr{P}), \mathscr{P} \rangle \qquad (\mathscr{P} \in \mathscr{G}) \; .$$

With respect to the inner product

$$\langle T, U \rangle = \operatorname{tr} T \circ U \qquad (T, U \in \mathscr{R}) ,$$

 \mathscr{R} decomposes orthogonally into $\mathscr{S} \oplus \mathscr{B}$, where \mathscr{S} is the span of the Grassmann quadratic *p*-relations which define \mathscr{G} :

$$\mathscr{G} = \{ \alpha \in \Lambda^p \mid \|\alpha\| = 1 \text{ and } \langle S(\alpha), \alpha \rangle = 0 \text{ for all } S \in \mathscr{S} \},\$$

and \mathscr{B} is the subspace of operators satisfying generalized Bianchi identities (for p = 2, the usual first Bianchi identity for a Riemannian curvature operator). The first section of this paper is devoted to this decomposition of \mathscr{R} . We show that $R \in \mathscr{B}$ and $\sigma_R \equiv 0$ imply R = 0. It follows that \mathscr{S} is the set of curvature operators whose sectional curvature is identically zero.

In §2 we find a basis for \mathscr{S} . This gives a reduction of the Grassmann quadratic *p*-relations to a minimal set of conditions. We believe that this result in exterior algebra is new and so we state it here (cf. Lemma 1.1).

Received March 13, 1972.