ON THE PRODUCT OF SCHUBERT CLASSES

PHILIP O. KOCH

1. Introduction

1.1. In his paper [1] Kostant has described the generalized Schubert classes which serve as a basis of the cohomology ring of a large class of homogeneous spaces. The problem investigated here is that of determining the product of two Schubert classes as a linear combination of the others. The extensive notation needed to discuss this question is recalled in $\S 2$. In $\S 3$ some preliminary results are developed, and it is shown that it is sufficient to study the case of the generalized flag manifolds. § 4 contains the main result in which it is shown how the application of a certain linear operator to the product of two Schubert classes yields the product in terms of the other classes. § 5 contains some general statements about the products, including formulas applicable in some simple cases.

2. Background

2.1. Let g be a complex semi-simple Lie algebra, and let $\mathfrak{f} \subset g$ be a fixed compact real form of \mathfrak{g}. So $\mathfrak{g}=\mathfrak{f}+i \mathfrak{f}$ is a real direct sum; and the CartanKilling form, denoted by (,), is negative definite on \mathfrak{f}. This permits a $*$-operation to be defined on g by $(x+i y)^{*}=-x+i y$ for $x, y \in \mathfrak{f}$. For any subspace $\mathfrak{Z}, \mathfrak{Z}^{*}=\left\{x^{*} \mid x \in \mathfrak{Z}\right\}$.

Let $\mathfrak{b} \subset \mathfrak{g}$ be a fixed Borel subalgebra. Then $\mathfrak{h}=\mathfrak{b} \cap \mathfrak{b}^{*}$ is a Cartan subalgebra. Let $\Delta \subset \mathfrak{h}$, the dual of \mathfrak{h}, be the set of roots associated with \mathfrak{h}. If $\mathfrak{H t}=\{x \in \mathfrak{g} \mid(x, y)=0 \forall y \in \mathfrak{b}\}$, then $\mathfrak{b}=\mathfrak{h}+\mathfrak{m}$ and $\mathfrak{g}=\mathfrak{b}+\mathfrak{m}^{*}$. Both \mathfrak{m} and \mathfrak{m}^{*} are maximal nilpotent subalgebras, and they are both \mathfrak{h}-modules under the adjoint action of \mathfrak{g} on \mathfrak{g}. Therefore \mathfrak{m} is the complex span of $\left\{e_{\varphi} \mid \varphi \in \Delta(\mathfrak{m})\right\}$ for a well-defined subset $\Delta(\mathfrak{m}) \subset \Delta$. Similary, \mathfrak{m}^{*} is the span of $\left\{e_{\varphi} \mid \varphi \in \Delta\left(\mathfrak{m}^{*}\right)\right\}$. One can show that e_{φ}^{*} is a nonzero multiple of $e_{-\varphi}$, so that $\Delta\left(\mathfrak{m}^{*}\right)=-\Delta(\mathfrak{m})$; and one can describe a lexicographic ordering in \mathfrak{h}^{\prime} for which the positive roots $\Delta_{+}=\Delta(\mathfrak{m})$ and the negative roots $\Delta_{-}=\Delta\left(\mathfrak{m}^{*}\right)$. Finally, one can normalize the root vectors $\left\{e_{\varphi} \mid \varphi \in \Delta\right\}$ so that both $\left(e_{\varphi}, e_{-\varphi}\right)=1$ and $e_{\varphi}^{*}=e_{-\varphi}$ are satisfied. This is the normalization we shall assume hereafter. If $x_{\varphi} \in \mathfrak{G}$ denotes the root normal corresponding to the root φ, then the following product formulas hold:

[^0]
[^0]: Communicated by B. Kostant, March, 13, 1972.

