J. DIFFERENTIAL GEOMETRY 8 (1973) 297-304

SPECIAL CONNECTIONS AND ALMOST FOLIATED METRICS

E. VIDAL & E. VIDAL-COSTA

On manifolds with a complex almost-product structure, we study some special connections related to the parallelism and integrability of the distributions and to a complex symmetric bilinear form (pseudo-metric) compatible with the structure, and establish the notion of almost-foliated metric which includes as a particular case the metric of a foliated type on a foliated manifold. (For Reinhart spaces see [6].)

1. Adapted connections

Let V be a differentiable manifold of class C^{∞} and dimension n, and let $T^{c}(V) = T(V) \otimes_{R}C$ denote the complexified space of the tangent space T(V) of the manifold. A complex almost-product structure defined on V gives two C^{∞} -fields T^{1} and T^{2} of supplementary subspaces, with respect to the Whitney sum, of $T^{c}(V)$ (dim $T^{1} = n_{1}$, dim $T^{2} = n_{2}$, $n_{1} + n_{2} = n$). If $x \in V$, [then every vector $X \in T_{x}^{c}$ is the sum of two vectors $PX \in T_{x}^{1}$ and $QX \in T_{x}^{2}$, so that $T_{x}^{1} + T_{x}^{2} = T_{x}^{c}$, P + Q = I (identity), P, Q being the projection tensors associated with T^{1} and T^{2} .

The complex almost-product structure is determined by a vectorial form H such that $H^2 = I$ gives H = P - Q in T^c . It is equivalent to the reduction of the structural group GL(n, C) of the fibration $T^c(V)$. The principal fibration associated with $T^c(V)$ has, as a structural group, the subgroup of the complex linear group GL(nC) of the form

(1)
$$\begin{pmatrix} GL(n_1, \mathbf{C}) & 0\\ 0 & GL(n-n_1, \mathbf{C}) \end{pmatrix},$$

The structure determined by the operator H = P - Q, such that $H^2 = I$, comprises as particular cases: the almost-complex structure when *n* is even and J = iP - iQ, $\overline{P} = iP$, $\overline{Q} = iQ$ are conjugate operators; and the real almost-product structure when *P*, *Q* are real.

We represent by A(V) the fibration of the complex references of T^c with GL(n, C) as the structural group, and by A'(V) the subfibration of the linear references adapted to the complex almost-product structure with (1) as the structural group.

Communicated by K. Yano, February 7, 1972, and, in revised form July 10, 1972.