SPECIAL CONNECTIONS AND ALMOST FOLIATED METRICS

E. VIDAL \& E. VIDAL-COSTA

On manifolds with a complex almost-product structure, we study some special connections related to the parallelism and integrability of the distributions and to a complex symmetric bilinear form (pseudo-metric) compatible with the structure, and establish the notion of almost-foliated metric which includes as a particular case the metric of a foliated type on a foliated manifold. (For Reinhart spaces see [6].)

1. Adapted connections

Let V be a differentiable manifold of class C^{∞} and dimension n, and let $T^{c}(V)=T(V) \otimes_{R} C$ denote the complexified space of the tangent space $T(V)$ of the manifold. A complex almost-product structure defined on V gives two C^{∞}-fields T^{1} and T^{2} of supplementary subspaces, with respect to the Whitney sum, of $T^{C}(V)\left(\operatorname{dim} T^{1}=n_{1}, \operatorname{dim} T^{2}=n_{2}, n_{1}+n_{2}=n\right)$. If $x \in V$, |then every vector $X \in T_{x}^{c}$ is the sum of two vectors $P X \in T_{x}^{1}$ and $Q X \in T_{x}^{2}$, so that $T_{x}^{1}+T_{x}^{2}=T_{x}^{c}, P+Q=I$ (identity), P, Q being the projection tensors associated with T^{1} and T^{2}.

The complex almost-product structure is determined by a vectorial form H such that $H^{2}=I$ gives $H=P-Q$ in T^{C}. It is equivalent to the reduction of the structural group $G L(n, C)$ of the fibration $T^{C}(V)$. The principal fibration associated with $T^{C}(V)$ has, as a structural group, the subgroup of the complex linear group $G L(n C)$ of the form

$$
\left(\begin{array}{cc}
G L\left(n_{1}, C\right) & 0 \tag{1}\\
0 & G L\left(n-n_{1}, C\right)
\end{array}\right),
$$

The structure determined by the operator $H=P-Q$, such that $H^{2}=I$, comprises as particular cases: the almost-complex structure when n is even and $J=i P-i Q, \bar{P}=i P, \bar{Q}=i Q$ are conjugate operators; and the real almost-product structure when P, Q are real.

We represent by $A(V)$ the fibration of the complex references of T^{C} with $G L(n, C)$ as the structural group, and by $A^{\prime}(V)$ the subfibration of the linear references adapted to the complex almost-product structure with (1) as the structural group.

Communicated by K. Yano, February 7, 1972, and, in revised form July 10, 1972.

