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COMPACT FLAT RIEMANNIAN MANIFOLDS

SHING TUNG YAU

Let M be a compact flat Riemannian manifold of dimension n, and π its
fundamental group. Then we have the following theorem of Bieberbach-
Auslander-Kuranishi [1], [2]:

Theorem 1. The group π is torsion free and satisfies the following exact
sequence

where A is a finitely generated maximal abelian subgroup of π, and Φ is a finite
group. Conversely, every group with the above property is the fundamental
group of a compact flat Riemannian manifold of dimension n. The group Φ is
the holonomy group of M.

In [3], E. Calabi announced that every compact flat Riemannian manifold
with nonzero first betti number can be given by a construction which we shall
call the Calabi construction. The purpose of § 1 of this paper is to generalize
Calabi's theorem to the case where M has positive semidefinite Ricci tensor and
to study the condition under which the Calabi construction is possible. We show
that if Φ is cyclic or if the dimension of M is odd and Φ is of odd order, then
the first betti number of M is not zero. This will follow from a fixed point
theorem.

In [9], A. T. Vasquez proved the following.
Theorem 2. There is associated with every finite group Φ a positive integer

n(Φ) such that: // M is a compact fiat Riemannian manifold with holonomy
group Φ, and dimM > n(Φ), then M is a fiat toral extension of another fiat
manifold of dimension <n(Φ).

The integer n(Φ) is not known except for the special case when Φ is a prime
order group for which n(Φ) = 1 and when Φ is Z2 X Z 2 for which n(Φ) < 6,
cf. [8]. In § 2 of this paper we prove that n{Φ) can be chosen to be less than or
equal to the sum of the indices of maximal cyclic subgroups of Φ. When Φ is of
prime order or is Z2 x Z2, we obtain the bound stated above. Theorem 2 is
reproved by using some elementary methods and hence avoiding results of I.
Reiner on integral representation of prime order groups and homology of groups.
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