A GENERALIZATION OF THE ISOPERIMETRIC INEQUALITY

THOMAS F. BANCHOFF \& WILLIAM F. POHL

1. For a simple closed plane curve of length L bounding an area A the classical isoperimetric inequality asserts that

$$
L^{2}-4 \pi A \geq 0
$$

with equality holding only for a circle. We show here that this inequality remains true for non-simple closed curves where in place of A we take the sum of the areas into which the curve divides the plane, each weighted with the square of the winding number, i.e.,

$$
L^{2}-4 \pi \int_{E^{2}} w^{2} d A \geq 0
$$

where, for $p \in E^{2}, w(p)$ is the winding number of p with respect to the curve. Equality holds if and only if the curve is a circle, or a circle traversed several times or several coincident circles each traversed in the same direction any number of times. Note that this implies that

$$
L^{2}-4 \pi \int_{E^{2}}|w|^{p} d A \geq 0
$$

for any $0<p \leq 2$ and that 2 is here the best possible power.
This may all be generalized to arbitrary dimension and codimension. For the case of closed space curves let G denote the space of lines in E^{3} (parallel lines are not identified) and let $d G$ denote its invariant measure [1], [7]. Then

$$
L^{2}-4 \int_{G} \lambda^{2} d G \geq 0
$$

where $\lambda(l)$ denotes the linking number of $l \in G$ with the curve. Equality holds

[^0]
[^0]: Received February 14, 1970. The work of the first author was supported by the National Science Foundation under Grant GP-7610, and that of the second author by the N.S.F. under Grant GP-5760 and the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

