HOLOMORPHIC MAPPINGS OF POLYDISCS INTO COMPACT COMPLEX MANIFOLDS

K. KODAIRA

In this paper we prove an inequality in the manner of the Nevanlinna theory expressing certain properties of holomorphic mappings of *n*-dimensional polydiscs into compact complex manifolds of the same dimension and discuss some of its applications.

1. Let W be a compact complex manifold of dimension n. For a point w in W, we denote a local coordinate of w by (w^1, w^2, \dots, w^n) . Take a complex line bundle L over W. By a theorem of de Rham, the Chern class c(L) of L can be regarded as a d-cohomology class of d-closed 2-forms on W. We say that a real (1, 1)-form

$$\gamma = i \sum_{lpha,eta=1}^n g_{lphaeta}(w) dw^lpha \wedge d\overline{w}^{\,eta} \;, \qquad i = \sqrt{-1} \;,$$

on W is positive semidefinite (or positive definite) if the Hermitian matrix $(g_{\alpha\beta}(w))_{\alpha,\beta=1,...,n}$ is positive semidefinite (or positive definite) at every point $w \in W$. Denote the canonical bundle of W by K. In this section we assume the existence of a complex line bundle L over W together with a positive integer m satisfying the following condition: The Chern class c(L) contains a positive semidefinite d-closed real (1, 1)-form and

(1)
$$\dim H^0(W, \mathcal{O}(K^m \otimes L^{-1})) > 0,$$

where $\mathcal{O}(K^m \otimes L^{-1})$ denotes the sheaf over W of germs of holomorphic sections of $K^m \otimes L^{-1}$.

Cover W by a finite number of small neighborhoods U_j , j = 1, 2, ..., and fix a local coordinate: $w \to (w_j^1, ..., w_j^n)$ on each U_j . Take a 1-cocycle $\{l_{jk}\}$ determining the line bundle L composed of nonvanishing holomorphic functions $l_{jk} = l_{jk}(w)$ defined, respectively, on $U_j \cap U_k$. We then find a 0-cochain $\{a_j\}$ composed of C^{∞} -differentiable functions $a_j = a_j(w) > 0$ defined, respectively, on U_j satisfying

$$a_{j}(w)^{m} = |l_{jk}(w)|^{2} a_{k}(w)^{m}$$
, on $U_{j} \cap U_{k}$,

such that

Received September 14, 1970, and, in revised form, November 5, 1970.