J. DIFFERENTIAL GEOMETRY 4 (1970) 81-89

THE CLASSIFICATION OF REAL PRIMITIVE INFINITE LIE ALGEBRAS

STEVE SHNIDER

The objects under consideration are the abstract transitive infinite Lie algebras (TILA) denoted (L, L⁰) which are introduced in [4]. If we let $V = L/L^0$, then the realization theorem of [4] proves that (L, L^0) is topologically isomorphic to a subalgebra of D(V), the continuous derivations of the formal power series $F(V^*)$. The complex primitive TILA have been classified.

We begin by recalling this classification. The results of [3] show that $g_L^0 = L^0/L^1$ contains elements of rank one. This fact is used to show that g_L^0 is one of the following: 1. sl (n, C), 2. gl (n, C), 3. sp (n, C), 4. Csp (n, C) (sp $(n, C) + \{I\}$), or that there is a formal 1-form of maximal rank such that the principle module generated by it over $F(V^*)$ is preserved under Lie derivation by elements of L.

In [6] these possibilities are analyzed and the following results established:

1. If the linear isotropy algebra $(=g_L^0)$ is sl(n, C), then L is the algebra of all vector fields with divergence zero.

2. If the linear isotroply algebra is gl(n, C), then L is either the algebra of vector fields of constant divergence or the algebra of all vector fields.

3. If the linear isotropy algebra is sp(n, C), then L is the algebra of all Hamiltonian vector fields.

4. In the last case L is the contact algebra.

We plan to classify the real primitive TILA using these results. We begin with a theorem of Guillemin proved in [1].

Theorem 1. Any primitive TILA (L, L^0) contains a closed ideal I of finite codimension such that $(I, I \cap L^0)$ is a primitive, simple TILA.

If (L, L^0) is a TILA, we define a filtered derivation to be a derivation d for which there exists an integer $-1 \le i < \infty$ such that $d: L^k \to L^{k+i}$ for all k.

Corollary. Any primitive TILA is contained in the algebra of filtered derivations of a primitive simple TILA, and contains the algebra of inner derivations as a closed ideal of finite codimension.

Note that the filtered derivations of a TILA (M, M^0) form a filtered algebra Δ . Set $g_{\Delta}^i = \Delta^i / \Delta^{i+1}$. $g_{\Delta}^0 \otimes g_{\Delta}^{-1}$ is mapped injectively into the derivations of $g_{M}^0 \otimes g_{M}^{-1}$ which preserve g_{M}^{-1} which we shall denote by $\text{Der}_*(g_{M}^0 \otimes g_{M}^{-1})$.

The program for completing the classification of real primitive TILA is to determine

Communicated by S. Sternberg, March 21, 1969.