ISOMETRIC IMMERSIONS IN SYMMETRIC SPACES

ALFRED GRAY

1. Introduction

Let M and \overline{M} be complete Riemannian manifolds (we make this assumption throughout the paper). Denote the sectional curvatures of M and \overline{M} by K and \overline{K} , respectively. R. Hermann [4] has proved the following theorem.

Theorem A. Suppose that \overline{M} is simply connected, M is isometrically immersed as a closed submanifold of \overline{M} , and $K \leq \overline{K} \leq 0$. Then $H_i(M) = 0$ for $i > \dim \overline{M} - \dim M$. (Here the homology groups have coefficients in an arbitrary field.)

It follows from Theorem A that M cannot be immersed in \overline{M} if dim $\overline{M} < 2 \dim M$ and M is compact. In fact E. Stiel [10] has proved the following result.

Theorem B. Suppose M is compact and \overline{M} is simply connected. If \overline{K} is constant, $\overline{K} \leq 0$, $K \leq 0$ and dim $\overline{M} < 2$ dim M, then M cannot be isometrically immersed in \overline{M} .

In this paper we show that the hypotheses of Theorem A can be weakened provided \overline{M} is a symmetric space. At the same time we obtain a generalization of Stiel's theorem. An example of our results is the following.

Theorem (3.4). Suppose M is isometrically immersed as a closed submanifold of \overline{M} , \overline{M} is a simply connected symmetric space with nonpositive curvature, and $\sup K \leq \min \overline{K} - \max \overline{K}$. Then M has the homotopy type of a CWcomplex with no cells of dimension greater than $\dim \overline{M} - \dim M$.

We also give variations of the above theorem under the hypotheses that M is a minimal variety of \overline{M} or that \overline{M} is not simply connected. Furthermore we consider the case when \overline{M} has positive curvature, and generalize some results of Ôtsuki [9].

2. The Hessian of the distance function

In this section we assume that M is isometrically immersed as a closed C^{∞} submanifold of \overline{M} . Let M_p and \overline{M}_p be the tangent spaces of M and \overline{M} at a point $p \in M$, and write $\overline{M}_p = M_p \oplus M_p^{\perp}$. We denote by \langle , \rangle the metric tensor of M or \overline{M} , and by $R_{xy}(x, y \in M_p)$ and $\overline{R}_{zw}(z, w \in \overline{M}_p)$ the curvature operators of

Received July 17, 1968. This work was partially supported by National Science Foundation grant GP-6974.