REDUCIBILITY OF EUCLIDEAN IMMERSIONS OF LOW CODIMENSION

STEPHANIE ALEXANDER

1. Introduction

By a theorem of Kobayashi, the holonomy algebra of a compact *D*-dimensional Riemannian manifold M, isometrically immersed in Euclidean space \mathbb{R}^{D+1} , is the full orthogonal algebra (M is not reducible, therefore). Suppose M is a reducible compact *D*-dimensional manifold having an isometric immersion ϕ in \mathbb{R}^{D+2} . A theorem of \mathbb{R} . L. Bishop gives the holonomy algebra of M at m to be the sum o(K) + o(D - K) of two orthogonal algebras acting on complementary orthogonal subspaces of the tangent space M_m . We show (Theorem 8.2) that, at least when ϕ is one-one, ϕ is in fact the product of two immersions of hypersurfaces, with an exception occurring in the case K = 1 or D - 1.

In §9, certain Euclidean immersions are shown to be cylindrical. The following result, for example, follows from the codimension one case and a wellknown theorem of Hartman and Nirenberg: If a complete *D*-dimensional manifold *M* has an isometric immersion ψ in \mathbb{R}^{D+1} , then *M* is a Riemannian product $M_1 \times \mathbb{R}^{D-K}$, where the restricted holonomy group of M_1 acts irreducibly, and ψ is (D - K)-cylindrical.

Throughout, M indicates a connected Riemannian manifold, and all structures are C^{∞} .

This material is from the author's doctoral dissertation submitted to the University of Illinois. The author is very grateful to Professor Bishop, her advisor, for many interesting and helpful discussions.

2. Isometric immersions

Some basic material concerning an isometric immersion $\phi: M \rightarrow \overline{M}$ is outlined here, largely to establish notation.

Let K and \overline{K} be the Riemannian tangent bundles of M and \overline{M} respectively. K is identified through the tangent map $d\phi$ with a metric sub-bundle of $\overline{K} | M; K^{\perp}$ will be the sub-bundle with complementary orthogonal fiber over each m (we write: $M_m + M_m^{\perp} = \overline{M}_m$). Letting \mathfrak{F} be the algebra of smooth

Received March 19, 1968. This work was supported by an American Association of University Women fellowship.