GROWTH OF FINITELY GENERATED SOLVABLE GROUPS AND CURVATURE OF RIEMANNIAN MANIFOLDS

JOSEPH A. WOLF

1. Introduction and summary

If a group Γ is generated by a finite subset S, then one has the "growth function" g_{s}, where $g_{s}(m)$ is the number of distinct elements of Γ expressible as words of length $\leq m$ on S. Roughly speaking, J. Milnor [9] shows that the asymptotic behaviour of g_{S} does not depend on choice of finite generating set $S \subset \Gamma$, and that lower (resp. upper) bounds on the curvature of a riemannian manifold M result in upper (resp. lower) bounds on the growth function of $\pi_{1}(M)$. The types of bounds on the growth function are

$$
\begin{array}{ll}
\text { polynomial growth of degree } \leq E: & g_{S}(m) \leq c \cdot m^{E}, \\
\text { exponential growth: } & u \cdot v^{m} \leq g_{S}(m),
\end{array}
$$

where c, u and v are positive constants depending only on $S, v>1$, and m ranges over the positive integers.

In § 3 we show that, if a group Γ has a finitely generated nilpotent subgroup Δ of finite index, then it is of polynomial growth, and in fact $c_{1} m^{E_{1}(d)} \leq g_{s}(m)$ $\leq c_{2} m^{E_{2}(\Delta)}$, where $0<c_{1} \leq c_{2}$ are constants depending on the finite generating set $S \subset \Gamma$, and $E_{1}(\Delta) \leq E_{2}(\Delta)$ are positive integers specified in (3.3) by the lower central series of Δ. In $\S 4$ we consider a class of solvable groups which we call "polycyclic"; Proposition 4.1 gives eleven characterizations, all useful in various contexts; finitely generated nilpotent groups are polycyclic. We prove that a polycyclic group, either has a finitely generated nilpotent subgroup of finite index and thus is of polynomial growth, or has no such subgroup and is of exponential growth. We also give a workable criterion for deciding between the two cases. Applying a result of Milnor [10] which says that a finitely generated nonpolycyclic solvable group is of exponential growth, we conclude that a finitely generated solvable group, either is polycyclic and has a nilpotent subgroup of finite index and is thus of polynomial growth, or has no nilpotent subgroup of finite index and is of exponential growth.

[^0]
[^0]: Received May 7, 1968. This research was supported by an Alfred P. Sloan Research Fellowship and by the National Science Foundation Grant GP-8008.

