A MORSE FUNCTION ON GRASSMANN MANIFOLDS

THEODOR HANGAN

Studying the critical sections of a convex body Wen Tsun Wu has obtained in [2] a Morse function on a Grassmann manifold. In the sequel it will be shown that another function may be obtained by composing the embedding of this manifold into a projective space with the well known Morse function of the projective space; our work is valid only for the real and complex fields.

1. The homology of the Grassmann manifold $G_{p . q}$ of all the p-planes of codimension q which pass through a fixed point 0 in an affine space A^{n} of dimension $n=p+q$ was determined in 1934 by Ch. Ehresmann who gave a cell subdivision of $G_{p, q}$. The number of cells in his subdivision is the number $N=\binom{n}{p}$ of combinations of p elements of the set $\{1, \ldots n\}$; such a combination $\sigma=\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ where $1 \leq \sigma_{1}<\cdots<\sigma_{p} \leq n$ is called a Schubert symbol. In the cell-subdivision of $G_{p, q}$, with each symbol σ one associates a cell of dimension

$$
d(\sigma)=\left(\sigma_{1}-1\right)+\cdots+\left(\sigma_{p}-p\right)
$$

Let us consider the lexicographical order in the set $S(p, q)$ of all the Schubert symbols which correspond to the integers p and q; this means that σ $=\left(\sigma_{1}, \cdots, \sigma_{p}\right)<\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right)$ if and only if for the least integer $i \leq p$ for which $\sigma_{i} \neq \sigma_{i}^{\prime}$ the inequality $\sigma_{i}<\sigma_{i}^{\prime}$ holds. We say that two symbols σ $=\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ and $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right)$ are neighboring if the sets $\left\{\sigma_{1}, \cdots, \sigma_{p}\right\}$ and $\left\{\sigma_{1}^{\prime}, \cdots, \sigma_{p}^{\prime}\right\}$ have exactly $p-1$ elements in common, or equivalently, if they differ only in what a single element is concerned. With these conventions we observe that the number $d(\sigma)$ equals the number of those Schubert-symbols which are less than and neighboring to σ. Indeed, in order to obtain a new symbol less than and neighboring to σ, the change of σ_{i} in σ may be made in $\sigma_{i}-i$ ways by replacing σ_{i} with a positive integer less than σ_{i} and different from $\sigma_{1}, \cdots, \sigma_{i-1}$.
2. In the projective space P^{N-1} of dimension $N-1$ we consider homogeneous coordinates y_{o} having as indices Schubert symbols $\sigma \in S(p, q)$ instead of positive integers running from 1 to N.

It is known, for example from [1], that the function

Communicated by S. S. Chern, February 1, 1968.

