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0. Introduction

With an immersion x of a Riemannian n-manifold M into a Euclidean N-
space EV there is associated the Gauss map, which assigns to a point p of
M the n-plane through the origin of E¥ and parallel to the tangent plane of
x(M) at x(p), and is a map of M into the Grassmann manifold G, y=
O(N)/O(n) x O(N — n).

An isometric immersion of M into a Euclidean N-sphere S¥ can be viewed
as one into a Euclidean (N + 1)-space E¥+!| and therefore the Gauss map
associated with such an immersion can be determined in the ordinary sense.
However, for the Gauss map to reflect the properties of the immersion into
a sphere, instead of into the Euclidean space, it seems desirable to modify
the definition of the Gauss map appropriately. To this end we consider the
set Q of all the great n-spheres in S¥, which is naturally identified with the
Grassmann manifold of (n 4 1)-planes through the center of S¥ in E¥*!,
since such (n + 1)-planes determine unique great n-spheres and conversely.

In this paper by the Gauss map of an immersion x into S¥ is meant a map
of M into the Grassmann manifold G,,,, ., which assigns to each point p of
M the great n-sphere tangent to x(M) at x(p), or the (n + 1)-plane spanned
by the tangent space of x(M) at x(p) and the normal to SV at x(p) in E¥*.

More generally, with an immersion x of M into a simply-connected com-
plete N-space V of constant curvature there is associated a map which assigns
to each point p of M the totally geodesic n-subspace tangent to x(M) at x(p).
Such a map is called the (generalized) Gauss map. Thus the Gauss map in
our generalized sense is a map: M — Q, where Q stands for the space of all
the totally geodesic n-subspaces in V.

The purpose of the present paper will be first to obtain a relationship among
the Ricci form of the immersed manifold and the second and third fundamen-
tal forms of the immersion, and then to give a geometric interpretation of the
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