CURVATURE AND THE EIGENVALUES OF THE LAPLACIAN

H. P. MCKEAN, JR. \& I. M. SINGER

1. Introduction

A famous formula of H. Weyl [19] states that if D is a bounded region of R^{d} with a piecewise smooth boundary B, and if $0>\gamma_{1} \geq \gamma_{2} \geq \gamma_{3} \geq$ etc. $\downarrow-\infty$ is the spectrum of the problem

$$
\begin{equation*}
\Delta f=\left(\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{d}^{2}\right) f=\gamma f \quad \text { in } \quad D \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
f \in C^{2}(D) \cap C(\bar{D}) \tag{1b}
\end{equation*}
$$

$$
\begin{equation*}
f=0 \quad \text { on } \quad B, \tag{1c}
\end{equation*}
$$

then

$$
\begin{equation*}
-\gamma_{n} \sim C(d)(n / \operatorname{vol} D)^{2 / d}(n \uparrow \infty) \tag{2}
\end{equation*}
$$

or, what is the same,

$$
\begin{equation*}
Z \equiv \operatorname{sp} e^{l \Delta}=\sum_{n \geq 1} \exp \left(\gamma_{n} t\right) \sim(4 \pi t)^{-d / 2} \times \operatorname{vol} D(t \downarrow 0) \tag{3}
\end{equation*}
$$

where $C(d)=2 \pi[d / 2)!]^{d / 2}$.
\AA. Pleijel [13] and M. Kac [6] took up the matter of finding corrections to (3) for plane regions D with a finite number of holes. The problem is to find how the spectrum of Δ reflects the shape of D. Kac puts things in the following amusing language : thinking of D as a drum and $0<-\gamma_{1}<-\gamma_{2} \leq$ etc. as its fundamental tones, is it possible, just by listening with a perfect ear, to hear the shape of D? Weyl's estimate (2) shows that you can hear the area of D. Kac proved that for D bounded by a broken line B,
(4a) $Z=\frac{\text { area } D}{4 \pi t}-\frac{\text { length } B / 4}{\sqrt{4 \pi t}}$

+ the sum over the corners of $\frac{\pi^{2}-\gamma^{2}}{24 \pi \gamma}+o(1) \quad(t \downarrow 0)$,

[^0]
[^0]: Communicated April 6, 1967. The partial support of the National Science Foundation under NSF GP-4364 and NSF GP-6166 is gratefully acknowledged.

