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Gr^SW 
F R O M P S E U D O - H O L O M O R P H I C C U R V E S 

TO S E I B E R G - W I T T E N S O L U T I O N S 

CLIFFORD HENRY TAUBES 

The Seiberg-Witten invariants were defined by Wit ten [24] for any 
compact, oriented 4-manifold with b2

+ > I; after the choice of an orien
tation for a certain determinant line, they consitute an map, SW, from 
the set S of Spin c structures on X to Z which depends only on the 
diffeomorphism type of X. Roughly speaking, SW is computed from a 
weighted count of solutions to a natural, non-linear system of differential 
equations on X. (See [9], [8] and [12].) As remarked in [17], a symplectic 
4-manifold has a canonical identification S « H2(X;Z); and with this 
identification understood, the Seiberg-Witten invariant on a symplectic 
X can be thought of as mapping H2(X; Z) to Z. 

Meanwhile, a symplectic 4-manifold has a second natural map, Gr: 
H2(X;Z,) —T- Z, called the Gromov invariant. The latter invariant 
is defined in [18]. To a first approximation, Gr assigns to a class 
e G H2(X; Z) a certain weighted count of the symplectic submanifolds of 
X whose fundamental class is Poincaré dual to e. The following theorem 
was announced in [17]: 

T h e o r e m 1. Let X be a compact, symplectic J^-manifold with 
b\ > 1. Use the symplectic structure to orient X, to define the Seiberg-
Witten invariants of X as a map SW : H2(X;Z) —> Z, and also to 
define the Gromov invariant Gr : H2(X; Z) —> Z. Then Gr = SW. 

As remarked in [17], there are essentially three parts to the proof 
of this theorem. The first part appears in [19] where it was shown how 
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