J. DIFFERENTIAL GEOMETRY 79 (2008) 197-241

NONLINEAR EVOLUTION BY MEAN CURVATURE AND ISOPERIMETRIC INEQUALITIES

Felix Schulze

Abstract

Evolving smooth, compact hypersurfaces in \mathbb{R}^{n+1} with normal speed equal to a positive power k of the mean curvature improves a certain 'isoperimetric difference' for $k \ge n-1$. As singularities may develop before the volume goes to zero, we develop a weak level-set formulation for such flows and show that the above monotonicity is still valid. This proves the isoperimetric inequality for $n \le 7$. Extending this to complete, simply connected 3-dimensional manifolds with nonpositive sectional curvature, we give a new proof for the Euclidean isoperimetric inequality on such manifolds.

1. Introduction

Let M^n be a smooth *n*-dimensional compact manifold without boundary and $F_0: M^n \to N^{n+1}$ a smooth embedding into an *n*+1-dimensional Riemannian manifold (N^{n+1}, \bar{g}) . We assume further that $F_0(M)$ has positive mean curvature in N^{n+1} . Starting from such an initial hypersurface there exists, at least for a short time interval [0, T), an evolution $F(\cdot, t): M^n \times [0, T) \to N^{n+1}$, which satisfies

(*)
$$\begin{cases} F(\cdot,0) = F_0(\cdot) \\ \frac{dF}{dt}(\cdot,t) = -H^k(\cdot,t)\nu(\cdot,t) \end{cases}$$

where $k \ge 1$, H is the mean curvature and ν is the outer unit normal, such that $-H\nu = \mathbf{H}$ is the mean curvature vector. Let A(t) denote the area of such an evolving hypersurface, V(t) the enclosed volume, and c_{n+1} the Euclidean isoperimetric constant. We aim to exploit the following fact, to which G. Huisken has drawn our attention: the 'isoperimetric difference'

(1)
$$A(t)^{\frac{n+1}{n}} - c_{n+1}V(t)$$

Received 06/01/2006.