J. DIFFERENTIAL GEOMETRY 79 (2008) 33-67

PROOF OF THE ANGULAR MOMENTUM-MASS INEQUALITY FOR AXISYMMETRIC BLACK HOLES

Sergio Dain

Abstract

We prove that an extreme Kerr initial data set is a unique absolute minimum of the total mass in a (physically relevant) class of vacuum, maximal, asymptotically flat, axisymmetric data for Einstein equations with fixed angular momentum. These data represent non-stationary, axially symmetric black holes.

As a consequence, we obtain that any data in this class satisfy the inequality $\sqrt{J} \leq m$, where m and J are the total mass and angular momentum of spacetime.

1. Introduction

An *initial data set* for the Einstein vacuum equations is given by a triple (S, h_{ij}, K_{ij}) where S is a connected 3-dimensional manifold, h_{ij} a (positive definite) Riemannian metric, and K_{ij} a symmetric tensor field on S, such that the vacuum constraint equations

$$(1) D_j K^{ij} - D^i K = 0$$

(2)
$$R - K_{ij}K^{ij} + K^2 = 0,$$

are satisfied on S. D and R are the Levi-Civita connection and the Ricci scalar associated with h_{ij} , and $K = K_{ij}h^{ij}$. In these equations the indices are moved with the metric h_{ij} and its inverse h^{ij} .

The manifold S is called *Euclidean at infinity* if there exists a compact subset \mathcal{K} of S such that $S \setminus \mathcal{K}$ is the disjoint union of a finite number of open sets U_k , and each U_k is isometric to the exterior of a ball in \mathbb{R}^3 . Each open set U_k is called an *end* of S. Consider one end U and the canonical coordinates x^i in \mathbb{R}^3 , which contains the exterior of the ball to which U is diffeomorphic. Set $r = (\sum (x^i)^2)^{1/2}$. An initial data set is called *asymptotically flat* if S is Euclidean at infinity, the metric h_{ij} tends to the euclidean metric, and K_{ij} tends to zero as $r \to \infty$ in an appropriate way. These fall off conditions (see [2], [13] for the optimal

Received 12/10/2006.