J. DIFFERENTIAL GEOMETRY 78 (2008) 497-519

THE LENGTH OF A SHORTEST GEODESIC LOOP AT A POINT

Regina Rotman

Abstract

In this paper we prove that given a point $p \in M^n$, where M^n is a closed Riemannian manifold of dimension n, the length of a shortest geodesic loop $l_p(M^n)$ at this point is bounded above by 2nd, where d is the diameter of M^n . Moreover, we show that on a closed simply connected Riemannian manifold M^n with a nontrivial second homotopy group there either exist at least three geodesic loops of length less than or equal to 2d at each point of M^n , or the length of a shortest closed geodesic on M^n is bounded from above by 4d.

Introduction and main results

Let M^n be a closed Riemannian manifold of dimension n. In 1983, M. Gromov asked whether one can bound above the length of a shortest closed geodesic $l(M^n)$ on M^n by c(n)vol $(M^n)^{\frac{1}{n}}$, where vol (M^n) is the volume of M^n and c(n) is a constant that depends on the dimension of M^n only. A similar question can be asked about the relationship between $l(M^n)$ and the diameter d of a manifold. The fact that on each manifold there exists a closed geodesic was shown by L. Lusternik and A. Fet. A similar argument shows that there exists a geodesic loop at each point of a closed Riemannian manifold. So, one can also ask if there exists a constant k(n) such that for each point $p \in M^n$, the length of a shortest geodesic loop $l_p(M^n)$ at this point is bounded above by k(n)d. Note that, although it is quite easy to see that $l_p(M^n) \leq 2d$ in the case of a closed Riemannian manifold that is not simply connected, this is not true in general, as it was recently shown by F. Balacheff, C.B. Croke, and M. Katz in [**BICK**].

Note also, that for no constant C(n) we can bound above $l_p(M^n)$ by $C(n) \operatorname{vol} (M^n)^{\frac{1}{n}}$ for every $p \in M^n$. For example, consider a prolate ellipsoid E that is an ellipsoid generated by an ellipse rotated around its major axis. Let us denote its polar radius by R. Let $p \in E$ be the north pole of E. Then all geodesics and, thus, geodesic loops passing through

Received 03/23/2007.