THE LENGTH OF A SHORTEST GEODESIC LOOP AT A POINT

Regina Rotman

Abstract

In this paper we prove that given a point $p \in M^{n}$, where M^{n} is a closed Riemannian manifold of dimension n, the length of a shortest geodesic loop $l_{p}\left(M^{n}\right)$ at this point is bounded above by $2 n d$, where d is the diameter of M^{n}. Moreover, we show that on a closed simply connected Riemannian manifold M^{n} with a nontrivial second homotopy group there either exist at least three geodesic loops of length less than or equal to $2 d$ at each point of M^{n}, or the length of a shortest closed geodesic on M^{n} is bounded from above by 4 d .

Introduction and main results

Let M^{n} be a closed Riemannian manifold of dimension n. In 1983, M. Gromov asked whether one can bound above the length of a shortest closed geodesic $l\left(M^{n}\right)$ on M^{n} by $c(n) \operatorname{vol}\left(M^{n}\right)^{\frac{1}{n}}$, where $\operatorname{vol}\left(M^{n}\right)$ is the volume of M^{n} and $c(n)$ is a constant that depends on the dimension of M^{n} only. A similar question can be asked about the relationship between $l\left(M^{n}\right)$ and the diameter d of a manifold. The fact that on each manifold there exists a closed geodesic was shown by L. Lusternik and A. Fet. A similar argument shows that there exists a geodesic loop at each point of a closed Riemannian manifold. So, one can also ask if there exists a constant $k(n)$ such that for each point $p \in M^{n}$, the length of a shortest geodesic loop $l_{p}\left(M^{n}\right)$ at this point is bounded above by $k(n) d$. Note that, although it is quite easy to see that $l_{p}\left(M^{n}\right) \leq 2 d$ in the case of a closed Riemannian manifold that is not simply connected, this is not true in general, as it was recently shown by F. Balacheff, C.B. Croke, and M. Katz in [BlCK].

Note also, that for no constant $C(n)$ we can bound above $l_{p}\left(M^{n}\right)$ by $C(n) \operatorname{vol}\left(M^{n}\right)^{\frac{1}{n}}$ for every $p \in M^{n}$. For example, consider a prolate ellipsoid E that is an ellipsoid generated by an ellipse rotated around its major axis. Let us denote its polar radius by R. Let $p \in E$ be the north pole of E. Then all geodesics and, thus, geodesic loops passing through

Received 03/23/2007.

