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Abstract

If an (n + 2)-dimensional Lorentzian manifold is indecompos-
able, but non-irreducible, then its holonomy algebra is contained
in the parabolic algebra (R⊕so(n))⋉R

n. We show that its projec-
tion onto so(n) is the holonomy algebra of a Riemannian manifold.
This leads to a classification of Lorentzian holonomy groups and
implies that the holonomy group of an indecomposable Lorentzian
spin manifold with parallel spinor equals to G ⋉ R

n where G is a
product of SU(p), Sp(q), G2 or Spin(7).

1. Introduction

Holonomy groups. An important tool to study the geometric struc-
ture of a smooth manifold M equipped with a linear connection ∇ is its
holonomy group. Parallel sections in geometric vector bundles, such as
tensor products of the tangent bundle or the spin bundle, correspond
to invariant objects under the holonomy representation. By a result
of J. Hano and H. Ozeki [22] any closed subgroup of Gl(m, R) can be
obtained as a holonomy group of a connection, but possibly a connec-
tion with torsion. By imposing conditions on the torsion there arises a
classification problem of possible holonomy groups. In order to tackle
such a classification problem one usually assumes that the connection
is torsion free and that holonomy group acts irreducibly. If the connec-
tion is torsion free, its curvature satisfies the Bianchi-identity imposing
algebraic constraints to the holonomy algebra via the Ambrose-Singer
holonomy theorem [3]. By evaluating these constraints M. Berger clas-
sified the irreducible semi-Riemannian holonomy groups (see [6] for not
locally symmetric semi-Riemannian manifolds, [7] for symmetric spaces,
and [35], [2], [10] and [11] for simplifications, corrections and existence
results in the Riemannian case), while L. Schwachhöfer and S. Merkulov
([31], [32], [33]) classified irreducible holonomy groups of torsion free
connections which are not necessarily compatible with a metric.
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