J. DIFFERENTIAL GEOMETRY 76 (2007) 399-422

LOGARITHMIC GROWTH OF SYSTOLE OF ARITHMETIC RIEMANN SURFACES ALONG CONGRUENCE SUBGROUPS

MIKHAIL G. KATZ, MARY SCHAPS & UZI VISHNE

Abstract

We apply a study of orders in quaternion algebras, to the differential geometry of Riemann surfaces. The least length of a closed geodesic on a hyperbolic surface is called its systole, and denoted sys π_1 . P. Buser and P. Sarnak constructed Riemann surfaces X whose systole behaves logarithmically in the genus g(X). The Fuchsian groups in their examples are principal congruence subgroups of a fixed arithmetic group with rational trace field. We generalize their construction to principal congruence subgroups of arbitrary arithmetic surfaces. The key tool is a new trace estimate valid for an arbitrary ideal in a quaternion algebra. We obtain a particularly sharp bound for a principal congruence tower of Hurwitz surfaces (PCH), namely the 4/3-bound sys $\pi_1(X_{\rm PCH}) \geq \frac{4}{3} \log(g(X_{\rm PCH}))$. Similar results are obtained for the systole of hyperbolic 3-manifolds, relative to their simplicial volume.

1. Orders in quaternion algebras and Riemann surfaces

Arithmetic lattices, besides their own intrinsic interest, have traditionally provided a rich source of examples in geometry. One striking application is the construction of isospectral, non-isometric hyperbolic surfaces by M.-F. Vigneras [**Vig80**]. A survey of arithmeticity as applied in geometry and dynamics may be found in [**Pa95**]. See [**Lub94**] for an application of congruence subgroups and the literature on girth in graph theory initiated by W. Tutte [**Tu47**]. See also [**ChW06**] for a recent geometric application of congruence subgroups.

While the simplest definition of arithmeticity, in analogy with $SL_2(\mathbb{Z})$, can be presented in terms of *n*-dimensional representations by matrices defined over the integers, for many purposes it is convenient to work with

The first author was supported by the Israel Science Foundation (grants no. 84/03 and 1294/06), the third author was supported by the EU research and training network HPRN-CT-2002-00287, ISF Center of Excellence grant 1405/05, and BSF grant no. 2004-083.

Received 09/02/2005.