J. DIFFERENTIAL GEOMETRY 86 (2010) 237-271

EXPLICIT BIRATIONAL GEOMETRY OF 3-FOLDS OF GENERAL TYPE, II

JUNGKAI A. CHEN & MENG CHEN

Abstract

Let V be a complex nonsingular projective 3-fold of general type. We shall give a detailed classification up to baskets of singularities on a minimal model of V. We show that the *m*-canonical map of V is birational for all $m \ge 73$ and that the canonical volume $\operatorname{Vol}(V) \ge \frac{1}{2660}$. When $\chi(\mathcal{O}_V) \le 1$, our result is $\operatorname{Vol}(V) \ge \frac{1}{420}$, which is optimal. Other effective results are also included in the paper.

1. Introduction

Let Y be a nonsingular projective variety of dimension n. It is said to be of general type if the pluricanonical map φ_m corresponding to the linear system $|mK_Y|$ is birational into a projective space for $m \gg 0$. Thus it is natural and important to find a constant c(n), depending only on dimension, so that φ_m is birational onto its image for all $m \ge c(n)$ and for all Y with dim Y = n.

It was classically known that, when dim Y = 1, $|mK_Y|$ gives an embedding of Y into a projective space for $m \ge 3$. When dim Y = 2, Kodaira-Bombieri's theorem [2] implies that $|mK_Y|$ gives a birational map onto the image for $m \ge 5$. A recent result of Hacon and M^cKernan [10], Takayama [23], and Tsuji [25] shows the existence of c(n), which is however non-explicit.

This is the continuation of our previous paper [4]. The aim of this paper is to prove a practical constant c(3), which is not too far from being sharp. Other effective results are included in this paper as well.

Recall that we have proved the following result in [4].

Theorem 1. ([4, Theorem 1.1]) Let V be a nonsingular projective 3-fold of general type. Then:

- (1) $P_{12} > 0;$
- (2) $P_{m_0} \ge 2$ for some positive integer $m_0 \le 24$.

Our main theorems of this paper are as follows.

Received 1/8/2010.