ADDENDUM TO "PRINCIPAL BUNDLES ON
 PROJECTIVE VARIETIES AND THE DONALDSON-UHLENBECK COMPACTIFICATION"

Vikraman Balaji

Abstract

In this addendum we complete the proof of Theorem 7.10 in [1].

In the paper [1], the proof of Theorem 7.10 is incomplete. This theorem proves the asymptotic non-emptiness of the moduli space of stable G-bundles on smooth projective surfaces, with structure group G which is simple and simply connected. This was pointed to us by Prof. S. Ramanan. In this addendum we complete the proof of this theorem. We retain the notations of [1].

The results in [1] which need to be modified are Lemma 7.5 and the proof of Proposition 7.6. In the cases which were considered in the proof of [$\mathbf{1}$, Proposition 7.6], the case when the monodromy group of a rank 2 stable bundle is the normalizer of a one-dimensional torus in $S L(2)$ was not taken into consideration. When this case is allowed, the loci of bundles in $M_{C}(S L(2))^{s}$, where the monodromy groups are proper subgroups of $S L(2)$, is no longer a countable set. In fact, it contains a subvariety whose dimension is $g(C)-1, g(C)$ being the genus of C. We therefore cannot work with the restriction to general curves as was done earlier in $[\mathbf{1}]$. Instead, we use a technique due to S . Donaldson (cf. $[2])$ which completes the argument without much difficulty.

Recall from [1, Page 393] that we wish to estimate the dimension of subset Z_{C} of representations of $\pi_{1}(C)$ in $S U(2)$ which lie entirely in these families of groups up to conjugacy by the diagonal action of $S U(2)$.

Since all the cases except $\mathcal{M}(V)=N(T)$ have been handled in [1] we need only take care of the locus of those bundles whose monodromy lies in the normalizer of the one dimensional torus. In this case it is easy to see that such a rank two bundle can be realised as a direct image of a line bundle from an unramified two sheeted cover $p: D \rightarrow C$ of C, and since we need the structure group to be $S L(2)$, the locus is precisely

$$
\left\{p_{*}(L) \mid \operatorname{det}\left(p_{*}(L)\right) \simeq \mathcal{O}_{C}\right\}
$$

Received 05/28/2009.

