J. DIFFERENTIAL GEOMETRY

83 (2009) 407-460

REDUCED GENUS-ONE GROMOV-WITTEN INVARIANTS

ALEKSEY ZINGER

Abstract

In a previous paper, we described a natural closed subset, $\overline{\mathfrak{M}}_{1,k}^{0}(X, A; J)$, of the moduli space $\overline{\mathfrak{M}}_{1,k}(X, A; J)$ of stable genusone *J*-holomorphic maps into a symplectic manifold *X*. In this paper we generalize the definition of the main component to moduli spaces of perturbed, in a restricted way, *J*-holomorphic maps and conclude that $\overline{\mathfrak{M}}_{1,k}^{0}(X, A; J)$, just like $\overline{\mathfrak{M}}_{1,k}(X, A; J)$, carries a virtual fundamental class, which can be used to define symplectic invariants. These truly genus-one invariants constitute part of the standard genus-one Gromov-Witten invariants, which arise from the entire moduli space $\overline{\mathfrak{M}}_{1,k}(X, A; J)$. The new invariants are more geometric and can be used to compute the genus-one GW-invariants of complete intersections, as shown in a separate paper.

1. Introduction

1.1. Background and Motivation. Let (X, ω, J) be a compact almost Kähler manifold. In other words, (X, ω) is a symplectic manifold and J is an almost complex structure on X tamed by ω , i.e.

$$\omega(v, Jv) > 0 \qquad \forall v \in TX - X.$$

If g, k are nonnegative integers and $A \in H_2(X; \mathbb{Z})$, let $\overline{\mathfrak{M}}_{g,k}(X, A; J)$ denote the moduli space of (equivalence classes of) stable *J*-holomorphic maps from genus-*g* Riemann surfaces with k marked points in the homology class *A*. Let

$$\mathfrak{M}^0_{q,k}(X,A;J) \subset \overline{\mathfrak{M}}_{q,k}(X,A;J)$$

be the subspace consisting of the stable maps $[\mathcal{C}, u]$ such that the domain \mathcal{C} is a smooth Riemann surface. The compact moduli space $\overline{\mathfrak{M}}_{g,k}(X, A; J)$ was constructed in order to "compactify" $\mathfrak{M}_{g,k}^0(X, A; J)$ and to define invariants of (X, ω) enumerating *J*-holomorphic curves of genus *g* in *X*. If g=0, $(X, \omega; A)$ is positive in a certain sense, and *J* is generic, then $\mathfrak{M}_{g,k}^0(X, A; J)$ is a dense open subset of $\overline{\mathfrak{M}}_{g,k}(X, A; J)$ and

Partially supported by an NSF Postdoctoral Fellowship.

Received 03/05/2008.