HIGHER ORDER BERGMAN FUNCTIONS AND EXPLICIT CONSTRUCTION OF MODULI SPACE FOR COMPLETE REINHARDT DOMAINS

Rong Du \& Stephen Yau

Abstract

In this article we introduce higher order Bergman functions for bounded complete Reinhardt domains in a variety with possibly isolated singularities. These Bergman functions are invariant under biholomorhic maps. We use Bergman functions to determine all the biholomorhic maps between two such domains. As a result, we can construct an infinite family of numerical invariants from the Bergman functions for such domains in A_{n} variety $\left\{(x, y, z) \in \mathbb{C}^{3}: x y=z^{n+1}\right\}$. These infinite family of numerical invariants are actually a complete set of invariants for either the set of all bounded strictly pseudoconvex complete Reinhardt domain in A_{n} variety or the set of all bounded pseudoconvex complete Reinhardt domains with real analytic boundaries in A_{n} variety. In particular the moduli space of these domains in A_{n} variety is constructed explicitly as the image of this complete family of numerical invariants. It is well known that A_{n} variety is the quotient of cyclic group of order $n+1$ on \mathbb{C}^{2}. We prove that the moduli space of bounded complete Reinhardt domains in A_{n} variety coincides with the moduli space of the corresponding bounded complete Reinhardt domains in \mathbb{C}^{2}. Since our complete family of numerical invariants are computable, we have solved the biholomorphically equivalent problem for large family of domains in \mathbb{C}^{2}.

1. Introduction

Let D_{1} and D_{2} be two domains in \mathbb{C}^{n}. One of the most fundamental problems in complex geometry is to determine conditions which will imply that D_{1} and D_{2} are biholomorphically equivalent. For $n=1$, the celebrated Riemann mapping theorem states that any simply connected domains in \mathbb{C} are biholomorphically equivalent. For $n \geqslant 2$, it is well known that there are lots of domains which are topologically equivalent to the ball but not necessarily biholomorphically equivalent

[^0]
[^0]: The first author was supported by NSFC and PSSCS of Shanghai. The second author was partially supported by Institute of Mathematics, East China Normal University, Shanghai, China. Research partially supported by NSF.

 Received 04/07/2008.

