A REGULARITY AND COMPACTNESS THEORY FOR IMMERSED STABLE MINIMAL HYPERSURFACES OF MULTIPLICITY AT MOST 2

NESHAN WICKRAMASEKERA

Abstract

We prove that a stable minimal hypersurface of an open ball which is immersed away from a closed (singular) set of finite co-dimension 2 Hausdorff measure and weakly close to a multiplicity 2 hyperplane must in the interior be the graph over the hyperplane of a 2-valued function satisfying a local $C^{1,\alpha}$ estimate. This regularity is optimal under our hypotheses. As a consequence, we also establish compactness of the class of stable minimal hypersurfaces of an open ball which have volume density ratios uniformly bounded by $3-\delta$ for any fixed $\delta \in (0,1)$ and interior singular sets of vanishing co-dimension 2 Hausdorff measure.

Contents

1.	Introduction	79
2.	Notation and preliminaries	85
3.	Blowing up off affine hyperplanes	88
4.	A transverse picture	114
5.	Regularity of blow-ups off affine hyperplanes	120
6.	Improvement of excess relative to pairs of hyperplanes	140
7.	Main regularity theorems	159
8.	Compactness and decomposition theorems	164
9.	Some further corollaries	169
References		172

1. Introduction

Our goal in this paper is to study the local structure of immersed, possibly branched, stable minimal hypersurfaces of the (n+1)-dimensional Euclidean space for arbitrary $n \geq 2$. Assuming the singular set of such

Research partly supported by NSF grant DMS-0406447. Received 12/01/2006.