
j . d i f f e r e n t i a l g e o m e t r y 

48 (1998) 407-437 

S U T U R E D M A N I F O L D H I E R A R C H I E S , E S S E N T I A L 
L A M I N A T I O N S , A N D D E H N S U R G E R Y 

YING-QING WU 

0. Introduct ion 

A compact orientable surface F with nonnegative Euler character­
istic is either a sphere, a disk, a torus, or an annulus. If a 3-manifold 
M contains such an essential surface, then it is said to be reducible, 
9-reducible, toroidal, or annular, respectively. Any such surface can be 
used to decompose the manifold further into simpler manifolds. We say 
that M is a simple manifold if it has no such surfaces. A simple mani­
fold is expected to have a nice geometric structure. If M has nonempty 
boundary, then the Geometrization Theorem of Thurston for Haken 
manifolds says that M with boundary tori removed admits a finite vol­
ume hyperbolic structure with totally geodesic boundary. When M has 
no boundaries, Thurston's Geometrization Conjecture asserts that M is 
either hyperbolic, or is a Seifert fiber space with orbifold a sphere with 
at most 3 cone points. 

Suppose T is a torus boundary component of M. We use M(j) to 
denote the manifold obtained by Dehn filling on T so that the slope 7 
on T bounds a disk in the Dehn filling solid torus. When M = E(K) 
is the exterior of a knot K in S 3 , denote M (7) by K(y), and call it 
the manifold obtained by 7 surgery on the knot K. It is well known 
that if M is simple, then there are only finitely many Dehn fillings on 
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