J. DIFFERENTIAL GEOMETRY 45 (1997) 499-577

SYMPLECTIC TOPOLOGY AS THE GEOMETRY OF ACTION FUNCTIONAL. I —RELATIVE FLOER THEORY ON THE COTANGENT BUNDLE

YONG-GEUN OH

1. Introduction and the main result

In the late 70's or the beginning of the 80's, Eliashberg proved the following theorem, which first indicated the existence of *symplectic topology* that is supposed to be finer than *differential topology*.

 C^0 -rigidity theorem [Eliashberg]. The group $Symp_{\omega}(P)$ of symplectic diffeomorphisms on a symplectic manifold (P, w) is C^0 -closed in Diff (P).

Eliashberg's original proof [12] relies on a structure theorem on the *combinatorial* structure of the *wave front set* of certain Legendrian submanifolds in the one-jet bundle. The complete detail of the proof of this structure theorem, however, has not been published in the literature. The heart of his proof is some kind of non-squeezing theorem, which he proved using the above structure theorem. In a seminal paper [28] in 1985, Gromov introduced the *elliptic techniques of pseudo-holomorphic curves* and proved, among many other things, the following non-squeezing theorem.

Non-squeezing theorem [Gromov]. Let $B^{2n}(R) \subset \mathbb{C}^n$ be the standard R-ball in \mathbb{C}^n and w_0 be the canonical symplectic structure on \mathbb{C}^n . Then there is a symplectic embedding

$$\phi: (B^{2n}(R), w_0) \to (Z^{2n}(r), w_0)$$

Received December 11, 1995, and, in revised form, March 22, 1996.