J. DIFFERENTIAL GEOMETRY 45 (1997) 390-406

EXOTIC DEFORMATION QUANTIZATION

VALENTIN OVSIENKO

1. Introduction

Let \mathcal{A} be one of the following commutative associative algebras: the algebra of all smooth functions on the plane: $\mathcal{A} = C^{\infty}(\mathbf{R}^2)$, or the algebra of polynomials $\mathcal{A} = \mathbf{C}[p,q]$ over \mathbf{R} or \mathbf{C} . There exists a non-trivial formal *associative* deformation of \mathcal{A} called the *Moyal* \star -product (or the standard \star -product). It is defined as an associative operation $\mathcal{A}^{\otimes 2} \to \mathcal{A}[[\hbar]]$ where \hbar is a formal variable. The explicit formula is:

(1)
$$F \star_{\hbar} G = FG + \sum_{k \ge 1} \frac{(i\hbar)^k}{2^k k!} \{F, G\}_k,$$

where $\{F, G\}_1 = \frac{\partial F}{\partial p} \frac{\partial G}{\partial q} - \frac{\partial F}{\partial q} \frac{\partial G}{\partial p}$ is the standard Poisson bracket, and the higher order terms are:

(2)
$$\{F,G\}_k = \sum_{i=0}^k (-1)^i \begin{pmatrix} k \\ i \end{pmatrix} \frac{\partial^k F}{\partial p^{k-i} \partial q^i} \frac{\partial^k G}{\partial p^i \partial q^{k-i}}.$$

The Moyal product is the *unique* (modulo equivalence) non-trivial formal deformation of the associative algebra \mathcal{A} (see [13]).

Definition 1. A formal associative deformation of \mathcal{A} given by formula (1) is called a \star -product if the following hold:

1) the first order term coincides with the Poisson bracket: $\{F, G\}_1 = \{F, G\};$

Received December 26 1995.