
j . d i f f e r e n t i a l g e o m e t r y 

45 (1997) 74-93 

O N T H E T O P O L O G I C A L E N T R O P Y 
O F G E O D E S I C F L O W S 

RICARDO MANE 

1. Introduct ion 

Let M n be a closed connected C°° manifold and let SM be its unit 
tangent bundle, defined as usual as SM = {9 = (x,v) : x G M, v G 
T x M, \\v\\ = f } . The geodesic flow (pt : SM —> SM is defined by 
(pt(x,v) = (j(t),j(t)), where 7 : R —> M is the geodesic with initial 
conditions 7(0) = x and 7(0) = v. 

Given x and y in M , define n T{x^ y) as the number of geodesics of 
length < T (parametrized by arc length) joining x and y. A standard 
application of Sard's Theorem to the exponential maps of M shows that 
n T(x, y) is finite and locally constant on an open full measure subset of 
M x M. 

Our aim is to relate the exponential growth rate of n T(x,y), as a 
function of T, with the topological entropy of the geodesic flow h top{<-p)-
In that direction, among other results, we shall prove that 

h top(<p) = lim — log Z n T(x,y)dxdy. 
T^+oo T MXM 

While proving this result, we shall also prove that Przytycki's upper 
estimate for the topological entropy of general C 2 flows [8], is always 
an equality for C°° geodesic flows. Since Przytycki's inequality will be 
a key tool in our proofs we begin by recalling its statement. Given a 
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