RIEMANN-ROCH FOR TORIC ORBIFOLDS

VICTOR GUILLEMIN

1. Introduction

Let $\alpha_1, \ldots, \alpha_d$ and μ be elements of the integer lattice, \mathbb{Z}^n , and let $N(\mu)$ be the number of solutions, $k = (k_1, \ldots, k_d)$, of the equation

$$(1.1) k_1\alpha_1 + \ldots + k_d\alpha_d = \mu ,$$

the k_i 's being non-negative integers. For this equation to be well-posed we will assume that the α_i 's lie in a fixed open half-space. In other words: for all $i, \xi(\alpha_i) > 0$, for some $\xi \in (\mathbf{R}^n)^*$. (Otherwise, for every μ for which (1.1) admits a solution it will admit an infinite number of solutions!) Also, in order for (1.1) to be solvable, μ has to be contained in the lattice generated by the α_i 's, and, with no essential loss of generality, we can assume that this lattice is \mathbf{Z}^n itself.

For every subset, I, of $\{1,\ldots,d\}$ let \mathbf{R}^I be the subspace of \mathbf{R}^n spanned by those α_i 's for which i is in I. We will say that μ is in general position with respect to α_1,\ldots,α_d if $\mu\in\mathbf{R}^I\leftrightarrow\mathbf{R}^I=\mathbf{R}^n$. (Thus the elements of \mathbf{R}^I are not in general position with respect to α_1,\ldots,α_d if \mathbf{R}^I is a proper subspace of \mathbf{R}^n .)

Let us consider the real analogue of (1.1):

$$(1.2) s_1\alpha_1 + \ldots + s_d\alpha_d = \mu + \epsilon \quad , \quad \epsilon \in \mathbf{R}^n,$$

the s_i 's being non-negative *real* numbers. The set of solutions, s, of this equation is a convex polytope in \mathbf{R}^d . We will denote this polytope by $\Delta_{\mu+\epsilon}$ and its I-th face:

(1.3)
$$\Delta_{u+\epsilon}^{I} = \{ s = (s_1, \dots, s_d) \in \Delta_{\mu+\epsilon}, \ s_i = 0 \text{ for } i \in I \}$$

by $\Delta_{\mu+\epsilon}^{I}$. We claim:

Received December 26 1995. Author supported by NSF grant DMS 890771.