THE RADIUS RIGIDITY THEOREM FOR MANIFOLDS OF POSITIVE CURVATURE

FREDERICK WILHELM

Abstract

Recall that the radius of a compact metric space (X, dist) is given by $rad\ X = \min_{x \in X} \max_{y \in X} dist(x,y)$. In this paper we generalize Berger's $\frac{1}{4}$ -pinched rigidity theorem and show that a closed, simply connected, Riemannian manifold with sectional curvature ≥ 1 and radius $\geq \frac{\pi}{2}$ is either homeomorphic to the sphere or isometric to a compact rank-one symmetric space.

The classical sphere theorem states that a complete, simply connected Riemannian n-manifold with positive, strictly 1/4-pinched sectional curvature is homeomorphic to S^n ([1], [16], and [21]). The weakly 1/4-pinched case is covered by

Berger's Rigidity Theorem ([2]). Let M be a complete, simply connected Riemannian n-manifold with sectional curvature, $1 \le \sec M \le 4$. Then either

- (i) M is homeomorphic to S^n , or
- (ii) M is isometric to a compact rank one symmetric space.

The hypotheses of Berger's Theorem imply (with a lot of work) that the injectivity radius of M satisfies inj $M \ge \frac{\pi}{2}$ ([6] or [17]). The diameter therefore, also satisfies diam $M \ge \pi/2$, and the class of complete Riemannian manifolds with

(*)
$$sec \ge 1$$
 and $diam \ge \pi/2$

Received January 21, 1995, and, in revised form, May 3, 1995. Supported in part by a National Science Foundation Postdoctoral Fellowship.