EIGENFUNCTION LOCALIZATION IN THE QUANTIZED RIGID BODY

JOHN A. TOTH

1. Introduction

It has long been known [5], [10], [12], [16], [17] that given a stable, closed, elliptic geodesic γ , one can associate with this curve a sequence of quasimodes ϕ_n for the corresponding Laplace operator $-\Delta$, in the sense that the ϕ_n have microsupport in a tube of width $\mathcal{O}(n^{-1/2})$ about γ and decay exponentially outside this tube. On the other hand, in the unstable, hyperbolic case, it is known [13] that under suitable hypotheses, one can associate complex resonances with hyperbolic orbits. However, analogous general results are not known for eigenvalues and eigenfunctions (see, however [4], [6], [7]. In this paper we focus on a specific paradigm; namely, that of the asymmetric rigid body reduced at an S^1 Noether symmetry. The corresponding quantum system on S^2 is integrable with the classical Lamé harmonics as joint eigenfunctions [20]. The classical system inherits a natural hyperbolic geodesic Γ corresponding to the unstable rotation about the middle-length inertial axis. Given the quantum Hamiltonian \mathcal{H} , we show that there is a sequence of L^2 -normalized eigenfunctions, ψ_n , with L^{∞} norm concentrated along Γ . More precisely, let $\Gamma(n^{-1})$ denote a tube of width $\mathcal{O}(n^{-1})$ about Γ , and let V_j ; j = 1, 2, 3, 4 denote arbitrarily small (but fixed) disconnected neighbourhoods about the four umbilic points on Γ . Our main results are:

$$\|\psi_n\|_{L^{\infty}(\Gamma(n^{-1})-\bigcup_j V_j)} = C rac{n^{1/4}}{\log n} + \mathcal{O}\left(rac{n^{1/4}}{(\log n)^2}
ight),$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 58FO7, 58G25; Secondary 33E10.

Received April 28, 1995. Supported in Part by NSF Grant DMS-9322614 and NSERC Drant OGP0170280.