ALGEBRAIC SOLUTIONS OF ONE-DIMENSIONAL FOLIATIONS

A. LINS NETO & M.G. SOARES

Abstract

In this article we consider the problem of extending the result of J.P.Jouanolou on the density of singular holomorphic foliations on $\mathbb{C}P(2)$ without algebraic solutions to the case of foliations by curves of $\mathbb{C}P(n)$.

1. Introduction and statement of results

A one-dimensional (singular) holomorphic foliation \mathcal{F} on $\mathbb{C}P(n)$ is given by a morphism

$$\Upsilon: \mathcal{O}(-d) \longrightarrow T\mathbf{C}P(n)$$

with singular set $sing(\mathcal{F}) = \{p : \Upsilon(p) = 0\}$. We will consider foliations with singular set in codimension greater than 1. Such a foliation \mathcal{F} is represented in affine coordinates (x_1, \ldots, x_n) by a vector field of the form

$$X = gR + \sum_{\ell=0}^{d} X_{\ell}$$

where R is the radial vector field $R = \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i}$, g is a homogeneous polynomial of degree d and X_{ℓ} is a vector field whose components are homogeneous polynomials of degree ℓ , $0 \leq \ell \leq d$. Since $sing(\mathcal{F})$ has codimension greater than 1 we have either $g \neq 0$ or $g \equiv 0$ and X_d cannot be written as hR where h is homogeneous of degree d-1. In this case X has a pole of order d-1 at infinity (see [6]). We call d the degree of the foliation.

If \mathcal{F} is a holomorphic foliation of dimension 1 on $\mathbb{CP}(n)$ with singular set $sing(\mathcal{F})$ and $\Gamma \subset \mathbb{CP}(n)$ is an irreducible algebraic curve, we say that Γ is an *algebraic solution* of \mathcal{F} provided $\Gamma \setminus sing(\mathcal{F})$ is a leaf of the foliation. We prove the following :

Received January 18, 1994, and in revised form, February 21, 1994.