ON THE EXISTENCE OF CONVEX HYPERSURFACES OF CONSTANT GAUSS CURVATURE IN HYPERBOLIC SPACE

HAROLD ROSENBERG & JOEL SPRUCK

Introduction

In this paper we shall prove that a codimension-one embedded submanifold Γ of $\partial_{\infty}(\mathbf{H}^{n+1})$ is the asymptotic boundary of a complete embedded K-hypersurface M of a hyperbolic (n + 1)-space \mathbf{H}^{n+1} for any $K \in (-1, 0)$. By a K-hypersurface M, we mean the Gauss-Kronecker curvature of M is the constant K (recall that $K = K_{\text{ext.}} - 1$, where $K_{\text{ext.}}$ is the extrinsic curvature of M, i.e., the determinant of the second fundamental form). Our approach is to construct the desired M as the limit of K-graphs over a fixed compact domain in a horosphere for appropriate boundary data. Thus an important part of our study is an existence theory for K-hypersurfaces which are graphs over a bounded domain in a horosphere. This is accomplished by solving a Monge-Ampere equation for the Gauss curvature using the recent work of [6].

In general, a codimension-two closed submanifold Γ of \mathbf{H}^{n+1} does not bound a K-hypersurface with K > -1. There are topological obstructions for Γ to bound a hypersurface with K > -1 (cf. [13]). For example, let Γ be a smooth Jordan curve in \mathbf{H}^3 , and assume Γ bounds a surface with K > -1. Then the curvature of Γ never vanishes, so let n(x), $x \in \Gamma$, be the unit principal normal to Γ . For $x \in \Gamma$, let $\Gamma_{\epsilon}(x)$ be the endpoint of the geodesic starting at x, of length ϵ , and with n(x) as tangent at x. For ϵ small, Γ_{ϵ} is embedded and disjoint from Γ . Then the linking number (mod 2) of Γ and Γ_{ϵ} is zero [13]; so it is easy to construct Γ which bound no surface with K > -1.

We will see that for Γ an embedded codimension-one submanifold of a horosphere $\subset \mathbf{H}^{n+1}$, and $K \in (-1, 0)$, there exists a K-hypersurface M with boundary $\partial M = \Gamma$.

Received July 16, 1993. The second author was supported in part by NSF grant DMS-88-02858 and DOE grant DE-FG02-86ER250125.