KAEHLER STRUCTURES ON TORIC VARIETIES

VICTOR GUILLEMIN

1. Let (X, ω) be a compact connected 2*n*-dimensional manifold, and let

(1.1)
$$\tau: T^n \to \operatorname{Diff}(X, \omega)$$

be an effective Hamiltonian action of the standard *n*-torus. Let $\phi: X \to \mathbb{R}^n$ be its moment map. The image, Δ , of ϕ is a convex polytope, called the *moment polytope*. Delzant showed in [5] that the triple (X, ω, τ) is determined up to isomorphism by this polytope, and also that X has an intrinsic T^n -invariant complex structure which is compatible with ω and makes X into a toric variety. The purpose of this note is to show that is not only the symplectic geometry of X determined by Δ , but also, to a certain extent, the *Kaehler* geometry of X. By [5], Δ can be described by a set of inequalities of the form

(1.2)
$$\langle x, u_i \rangle \geq \lambda_i, \qquad i = 1, \cdots, d;$$

the u_i 's being primitive elements of the lattice, \mathbb{Z}^n , and d the number of (n-1)-dimensional faces of Δ . Let $l_i: \mathbb{R}^n \to \mathbb{R}$ be the map

$$l_i(x) = \langle x, u_i \rangle - \lambda_i,$$

and let Δ° be the interior of Δ . Then $x \in \Delta^{\circ}$ if and only if $l_i(x) > 0$ for all *i*. Let

$$l_{\infty}(x) = \sum_{i=1}^{d} \langle x, u_i \rangle.$$

Our main result is the following formula for the restriction of ω to $\phi^{-1}(\Delta^{\circ})$:

(1.3)
$$\omega = \sqrt{-1}\partial\overline{\partial}\pi^* \left(\sum_{i=1}^d \lambda_i(\operatorname{Log} l_i) + l_{\infty}\right).$$

This we will derive as a corollary of another result which I will now describe: By [5] there is an intrinsic involution $\gamma: X \to X$ which reverses

Received September 15, 1993. The author was supported by NSF grant DMS 890771.