LP **COHOMOLOGY OF CONES AND HORNS**

BORIS YOUSSIN

Abstract

We prove the conjecture of J. Brasselet, M. Goresky, and R. MacPherson on the isomorphism between L^p cohomology and intersection cohomol ogy for a stratified space with a Riemannian metric and conical singular ities. We prove the extension of this conjecture to spaces with f -horn singularities, where $f(r)$ is any C^{∞} nondecreasing function.

We study the L^p Stokes property which states that the minimal closed extension of *d* acting on $L^{\hat{p}}$ forms coincides with the maximal one. We prove that it implies the Borel-Moorse duality between the complexes of L^p forms and L^q forms. We also prove the converse for spaces with *f*-horn singularities under the condition that the integral $\int_0^{\epsilon} f(r)^{-1} dr$ diverges.

1. Introduction

J. Cheeger [4] discovered that the L^2 cohomology of a compact strati fied pseudomanifold with respect to a metric which has conical singulari ties, is isomorphic to its upper middle-perversity itersection cohomology. He showed that this is also the case for the singular metrics which he called *f*-horns; locally they are of the form $dr^2 + f(r)^2g$ where *r* is the radial coordinate (i.e., the distance from the singular point), *g* is the metric on the link of the point, and f is a function of r of the form $f(r) = r^c$ with $c > 1$; in case $c = 1$ we get a cone. If L is the link, then the f-horn over it is denoted $C^{J}L$. (See Definitions 3.1.1 and 3.2.1.)

M. Nagase [7] considered the case $c < 1$ and showed that when L^2 cohomology is isomorphic to the intersection cohomology, although with a different perversity, greater than the middle one and dependent upon the value of *c*.

J. Brasselet, M. Goresky, and R. MacPherson [2] conjectured that the L^p cohomology of a metric with conical singularities is isomorphic to the intersection cohomology with a perversity \bar{p} which corresponds to L^p cohomology: $\overline{p}(k) = \max\{i \in \mathbb{Z} | i < k/p\}$.

Received November 19, 1992. Partially supported by NSF grant DMS-9106444 at MIT.