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CURVATURE MEASURES AND CHERN CLASSES
OF SINGULAR VARIETIES

JOSEPH H. G. FU

The aim of the present article is to show how the approach of [8]
to studying the curvature measures of a singular space yields a natural
geometric treatment of the theory of Chern homology classes of singular
complex analytic varieties. These classes were first considered by M. H.
Schwartz [0], but were neglected at the time. Deligne and Grothendieck
later introduced axioms for a conjectural theory of Chern homology classes
for singular varieties. MacPherson then constructed classes fulfilling these
axioms in the seminal paper [16]. Subsequent to MacPherson's work, it
was shown by Brylinski, Dubson, and Kashiwara [2] that the MacPherson
Chern classes of a singular variety X admit a simple expression involving
the characteristic cycle of X from the theory of D-modules. Up to this
point, however, a complete treatment of the properties of these classes has
rested upon the somewhat indirect approach of [16]. In the meantime,
we independently constructed the characteristic cycle of Kashiwara by di-
rect geometric means [8]. The geometric insight from our construction
allows us to give a direct and intuitively appealing proof of the Deligne-
Grothendieck axioms, which is what we present in these pages.

The advantages of our method over that of [16] are twofold. First, the
key covariance axiom of Deligne-Grothendieck for morphisms / : X —• Y
of varieties was established only indirectly for singular varieties X, using
Hironaka's formidable resolution theorem. Our treatment, on the other
hand, works with the singular varieties directly, without mention of res-
olutions. (We have, however, no proof of uniqueness for the Deligne-
Grothendieck axioms apart from the original obvious argument using res-
olution.) Second, certain key coefficients associated to the strata of singular
X are in [16] computed somewhat circuitously: viz. by initially defining a
certain natural transformation T using a topological "Euler obstruction",
and then inverting T. The Euler obstruction never enters the treatment of
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