THE MOMENT MAP AND LINE BUNDLES OVER PRESYMPLECTIC TORIC MANIFOLDS

YAEL KARSHON & SUSAN TOLMAN

Abstract

We apply symplectic methods in studying smooth toric varieties with a closed, invariant 2-form ω that may have degeneracies. Consider the push-forward of Liouville measure by the moment map. We show that it is a "twisted polytope" in t^{*} which is determined by the winding numbers of a map $S^{n-1} \rightarrow t^*$ around points in t^{*}. The index of an equivariant, holomorphic line-bundle with curvature ω is a virtual *T*-representation which can easily be read from this "twisted polytope".

1. Introduction

A symplectic manifold is a smooth manifold M with a closed 2-form ω which is everywhere nondegenerate. Let T be a compact torus which acts effectively, preserving ω . A moment map for (M, T, ω) is a map $\Phi: M \to t^*$ such that $\langle d\Phi, \xi \rangle = -i(\xi_M)\omega$ for every $\xi \in t$, where ξ_M denotes the corresponding vector field on M. By the Atiyah-Guillemin-Sternberg convexity theorem [1], [12], the image of the moment map is a convex polytope Δ . For an excellent introduction to this subject, see [3].

If (M, T, ω) admits a moment map, then the dimension of T cannot exceed half of the dimension of M. If dim $T = \frac{1}{2} \dim M$, then the action is *completely integrable*. Delzant [5] classifies these spaces; the polytope Δ determines (M, T, ω) up to equivariant symplectomorphism. Moreover, he shows that (M, T) is equivariantly diffeomorphic to a *toric manifold*, i.e., a smooth toric variety.

In particular, M admits a complex structure such that T acts holomorphically. Let L be an equivariant holomorphic line bundle over Mwith curvature ω , where ω is the imaginary part of a Kähler form on M. Denote the sheaf of holomorphic sections of L by \mathscr{O}_L . Then $H^i(M, \mathscr{O}_L)$ is a representation of T. Danilov [4] shows that the weights which occur in $H^0(M, \mathscr{O}_L)$ are exactly the lattice points in Δ (with multiplicity one), whereas $H^i(M, \mathscr{O}_L) = 0$ for i > 0.

Received June 1, 1992.