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ON THE SMOOTH COMPACTIFICATION
OF SIEGEL SPACES
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Introduction

Let X = I'\Q be a noncompact locally symmetric Hermitian space,
where Q is a bounded symmetric domain and I'" is an arithmetic sub-
group acting on Q. It is well known that X is quasiprojective’, and the
canonical Bergman metric on X induced from Q is a Kihler-Einstein
metric of negative curvature if X is smooth (it is the case where I is
neat). Since the smooth compactifications of X were introduced in [1]
from the toroidal embeddings, Mumford obtained the following results on
X in his proof of noncompact Hirzebruch’s proportionality [12]:

1. X is of logarithmic general type.

2. The Bergman metric g on X is a good singular Hermitian metric on
any smooth toroidal compactification X of X . In other words, assuming
that the boundary D = X — X is locally defined as Hf:n z; =0, then the
volume form ® of g behaves singularly along the boundary D as
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for some integer N > 0.

To have broader and deeper applications of the theory on the locally
symmetric Hermitian spaces in algebraic and differential geometry (see the
references [15], [16] and [9]), people would like to understand more about
X and its compactification X besides Mumford’s work. One would like
to completely understand the algebraic structures of the boundary divisor
D and the canonical bundle Ky of X and to have a precise singular
description of the canonical volume form & along D. The goal of this
paper is to study these questions for the quotient of Siegel upper half spaces
by an intensive investigation of their smooth toroidal compactifications.
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A noncompact variety V is said to be quasiprojective if V' is a Zariski open dense
subset of a projective variety V .



