BRUHAT CELLS IN THE NILPOTENT VARIETY AND THE INTERSECTION RINGS OF SCHUBERT VARIETIES

JAMES B. CARRELL

1. Introduction

Let G be a complex semisimple Lie group with fixed opposite Borel subgroups B and B⁻, and let H be the maximal torus $B \cap B^-$. $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ denote the Lie algebras of G, B, H respectively and W = N(H)/H is the Weyl group of (G, H). A famous result in Lie theory says that the cohomology algebra $H'(G/B; \mathbb{C})$ of the flag variety G/B of G is isomorphic to the coordinate ring $A(\mathcal{N} \cap \mathfrak{h})$ of the scheme-theoretic intersection of the nilpotent variety $\mathcal{N} \subset \mathfrak{g}$ and the Cartan subalgebra \mathfrak{h} . The purpose of this paper is to extend this result to Schubert varieties $X_w := \overline{BwB/B}$ in G/B, where $w \in W$.

We introduce a locally closed stratification \mathscr{B}_w of \mathscr{N} by "Bruhat cells" defined by putting $\mathscr{B}_w = \operatorname{Ad}(Bw^{-1}B)u$, where u is the nilradical of b. $\mathscr{N}_w := \overline{\mathscr{B}}_w$ is a Zariski closed irreducible cone in g such that $\mathscr{N}_w \subseteq \mathscr{N}_y$ if and only if $X_w \subseteq X_y$. Recall that the scheme-theoretic intersection of varieties Z_1 and Z_2 in g is the scheme $Z_1 \cap Z_2$ defined by the ideal $I(Z_1) + I(Z_2)$ where $I(Z_i)$ is the ideal of Z_i in the coordinate $A(\mathfrak{g})$ of g. By definition, the coordinate ring $A(Z_1 \cap Z_2)$ of $Z_1 \cap Z_2$ is $A(\mathfrak{g})/(I(Z_1) + I(Z_2))$. We will prove

Theorem 1. For each $w \in W$, there exists a surjective degree doubling homomorphism of graded \mathbb{C} -algebras $\psi_w \colon A(\mathcal{N}_w \cap \mathfrak{h}) \to H^{\cdot}(X_w; \mathbb{C})$ such that if $X_w \subseteq X_v$, the diagram

Received April 30, 1990 and, in revised form, December 4, 1991. The author's work was partially supported by a grant from the National Sciences and Engineering Research Council of Canada.