ON THE MODULI SPACE OF VECTOR BUNDLES ON THE FIBERS OF THE UNIVERSAL CURVE

ALEXIS KOUVIDAKIS

Dedicated to the memory of S. K. Pichorides

Abstract

In this paper we describe the Picard group of the variety $\mathscr{U}(r, d)$ which parametrizes semistable vector bundles of rank r and degree d on the fibers of the universal curve \mathscr{C}_g . The bundle $\mathscr{U}(r, d)$ lies over the moduli space \mathscr{M}_g^0 of smooth curves of genus g $(g \ge 3)$ without automorphisms.

1. Introduction

We denote by \mathscr{M}_g^0 the moduli space of smooth curves of genus g $(g \ge 3)$ without automorphisms. To this space we can associate various varieties: The universal curve $\pi: \mathscr{C}_g \to \mathscr{M}_g^0$ which is a bundle with fiber the curve C over the point $[C] \in \mathscr{M}_g^0$; the variety $q: \mathscr{U}(r, d) \to \mathscr{M}_g^0$ with fiber over [C] the space $U_C(r, d)$, which parametrizes semistable vector bundles of rank r and degree d on C—for the definition see [9]. In the special case when r = 1, this becomes the Jacobian variety $p: \mathscr{J}^d \to \mathscr{M}_g^0$ of degree d with fiber $J^d(C)$ over the point [C], which parametrizes line bundles of degree d on C.

The Picard groups of \mathcal{M}_g^0 and \mathcal{C}_g have been described by Harer, Arbarello and Cornalba (see [1]). The Pic \mathcal{M}_g^0 is generated by the determinant λ of the Hodge bundle. On the other hand, the restriction of a line bundle on \mathcal{C}_g to the fibers of π is something "canonical", namely a multiple of the canonical bundle (Franchetta's problem, see [1]). Therefore the relative Picard group Pic $(\mathcal{C}_g/\mathcal{M}_g^0)$ is generated by the relative dualizing sheaf ω_{π} of the family π and the Pic \mathcal{C}_g is the free abelian group with generators ω_{π} and $\pi^*\lambda$.

In this paper we prove that a similar phenomenon holds for line bundles on $\mathscr{U}(r, d)$. The restriction of a line bundle on $\mathscr{U}(r, d)$ to a fiber

Received January 13, 1992.