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Abstract

We describe a construction for metrics of prescribed scalar curvature on
S2 xR, based on a quasi-spherical coordinate condition. The construction
uses two arbitrary functions and requires the solution of a semilinear
parabolic equation on S , with the arbitrary functions and the scalar
curvature appearing as source terms. We obtain existence results for this
equation under various geometrically natural boundary conditions, and
thereby construct some 3-metrics of interest in general relativity.

1. Introduction

Riemannian 3-manifolds with prescribed scalar curvature arise naturally
in general relativity as spacelike hypersurfaces in the underlying spacetime.
If S = (Sij) > i9 J; = 19 ''' 9 3, is the induced (Riemannian) metric on the
spacelike hypersurface M, then the scalar curvature R(g) is determined
by the extrinsic curvature (second fundamental form) K-. and the space-
time energy-momentum tensor Taβ , via the Gauss-Codazzi and Einstein
equations:

(1.1) l6πT(eo,eQ) = R(g) - \\K\\2 + (trgK)\

where e0 is the (future) timelike unit normal of the hypersurface M,

II^H2 = gιkgilKijKkl9 XτgK = glJKij, and the Einstein equations are

Gaβ := Ricα£ ~jRgaβ = %πTaβ . The main situation of physical interest

is where R(g) > 0—for example, if M is totally geodesic (K.. = 0) and

the spacetime is vacuum (Taβ = 0), then R(g) = 0, and more generally

if M is a maximal hypersurface (tr^ K = 0) and the spacetime satisfies

the weak energy condition [18], then T(e0, e0) > 0 and thus R(g) >

0. Provided M is suitably constrained (for example, by the maximal

hypersurface condition), the metric structure of (M, g) reflects that of

the ambient spacetime, and therefore it is important to understand this

structure.
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