# A KNOT INVARIANT VIA REPRESENTATION SPACES 

XIAO-SONG LIN

## 0. Introduction

A beautiful construction of A . Casson on the representation spaces corresponding to a Heegard splitting of an oriented homology 3-sphere $M$ gives rise to an integer invariant $\lambda(M)$ of $M$. This invariant generalizes the Rohlin invariant and gives stricking corollaries in low-dimensional topology. Defined as an intersection number of appropriate subspaces, this invariant $\lambda(M)$ can be roughly thought of as the number of conjugacy classes of irreducible representations of $\pi_{1}(M)$ into $\mathrm{SU}_{2}$ counted with signs. A detailed discussion of this invariant can be found in an exposé by S. Akbulut and J. McCarthy [1]. Further works on Casson's invariant include the generalizations by K. Walker as well as S. Boyer and A. Nicas to rational homology 3-spheres [14], [3] and by S. Cappell, R. Lee, and E. Miller to representations into $\mathrm{SU}_{n}$ [4]. The works of C. Taubes [13] and A. Flore [6] interpret Casson's invariant as the Euler number of the instanton homology (or Flore homology) of $M$.

In this paper, analogous to Casson's original construction, we will define an intersection number of the representation spaces corresponding to a braid representative of a knot $K$ in $S^{3}$. This intersection number turns out to be an integer knot invariant (see Theorem 1.8). The representations of the knot group $\pi_{1}\left(S^{3} \backslash K\right)$ used in our construction seem to be mysterious. They are representations of $\pi_{1}\left(S^{3} \backslash K\right)$ into $\mathrm{SU}_{2}$ such that all meridians of $K$ are represented by trace-zero matrices. Call such a representation of the knot group a trace-free representation. Then, roughly speaking, our knot invariant $h(K)$ is the number of conjugacy classes of irreducible trace-free representations of $\pi_{1}\left(S^{3} \backslash K\right)$ counted with signs.

Our knot invariant $h(K)$ can be computed via knot diagrams. It turns out that our algorithm of computing $h(K)$ by using the skein model is the same as the algorithm of computing $\frac{1}{2} \operatorname{sgn}(K)$ given by J. H. Conway [5],

[^0]
[^0]:    Received November 21, 1990. This research was supported in part by National Science Foundation Grant DMS-9004017.

