NOTE ON THE PERIODIC POINTS OF THE BILLIARD

LUCHEZAR STOJANOV

Marek Rychlik [2, Theorem 1.1] proves that for any bounded convex domain Ω in a Euclidean plane \mathbf{R}^2 with smooth boundary $X=\partial\Omega$ the set Fix₃ of all periodic points of period 3 of the billiard ball map related to Ω has empty interior in its (two-dimensional) phase space M_{Ω} . The last part of the proof of this theorem, considered in [2], involves a symbolic computation system. In this note a short elementary argument is presented which completes the proof in [2] without use of any computer programs. Combining this argument with §3 in [2], one gets also a direct proof of Theorem 1.2 of [2]: Fix₃ has Lebesgue measure zero.

We use the notation from [2], and state the results of [2] in a little more general form.

Theorem. Let Ω be a bounded (note necessarily convex) domain in \mathbf{R}^2 with C^3 -smooth boundary X. Then Fix_3 has empty interior and Lebesgue measure zero in M_{Ω} .

Proof. Let y_1 , \cdots , y_n be the successive (transversal) reflection points of a periodic billiard trajectory in Ω . Consider a natural parametrization $h_i(x_i)$, $x_i \in \mathbf{R}$, of X around y_i with $||h_i'(x_i)|| \equiv 1$, $\cos \varphi_i = \langle e_i, \nu_i \rangle > 0$, where $\nu_i = \nu(x_i)$ is the *unit normal* to X at $h_i(x_i)$, pointing into Ω , $\langle \cdot, \cdot \rangle$ is the natural inner product in \mathbf{R}^2 , φ_i is the angle between e_i and ν_i , $0 < \varphi_i < \pi/2$, and

$$e_i = \frac{h_{i+1}(x_{i+1}) - h_i(x_i)}{||h_{i+1}(x_{i+1}) - h_i(x_i)||}.$$

One can introduce Φ_i and $\widehat{\Phi}_i$ simply by setting $\Phi_i = \cos \varphi_i$ and $\widehat{\Phi}_i = \sin \varphi_i$. Then, if $h_i(x_i)$ are the reflection points of a periodic trajectory, a simple computation gives

$$\frac{\partial l(x_i,\,x_{i+1})}{\partial x_i} = -\langle e_i\,,\,h_i'\rangle = -\cos\varphi_i = -\Phi_i = -\frac{\partial l(x_{i-1},\,x_i)}{\partial x_i}.$$

Received December 7, 1990. This note was written while the author was a fellow of the Alexander von Humboldt Foundation at T H Darmstadt, Germany.