J. DIFFERENTIAL GEOMETRY 34 (1991) 411-423

ON THE GAUSS MAP OF MINIMAL SURFACES IMMERSED IN Rⁿ

MIN RU

Abstract

In this paper, we prove that the Gauss map of a nonflat complete minimal surface immersed in a Euclidean *n*-space \mathbb{R}^n can omit at most n(n+1)/2 hyperplanes in a complex projective (n-1)-space $\mathbb{C}P^{n-1}$ located in general position.

1. Introduction

Let M be a smooth oriented two-manifold without boundary. Take an immersion $f: M \to \mathbb{R}^n$. The metric on M induced from the standard metric ds_E^2 on \mathbb{R}^n by f is denoted by ds^2 . Let Δ denote the Laplace-Beltrami operator of (M, ds^2) . The local coordinates (x, y) on (M, ds^2) are called *isothermal* if $ds^2 = h(dx^2 + dy^2)$ for some local function h > 0. Make M into a Riemann surface by decreeing that the 1-form dx + idy is of type (1, 0), where (x, y) are any isothermal coordinates. In terms of the holomorphic coordinate z = x + iy, we can write

$$\Delta = \frac{-4}{h} \frac{\partial^2}{\partial z \partial \bar{z}} \,.$$

We say that f is minimal if $\Delta f = 0$, i.e., an immersion into \mathbf{R}^n is minimal if and only if it is harmonic relative to the induced metric.

The Gauss map of f is defined to be

$$G: M \to \mathbb{C}P^{n-1}, \qquad G(z) = [(\partial f / \partial z)],$$

where $[(\cdot)]$ denotes the complex line in \mathbb{C}^n through the origin and (\cdot) . By the assumption of minimality of M, G is a holomorphic map of M into $\mathbb{C}P^{n-1}$.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete minimal surface in \mathbb{R}^3 cannot omit seven points of the sphere [15]. In 1988, Fujimoto reduced seven to five, which is sharp [6]. For the n > 3

Received March 30, 1990.