A GEOMETRIC CHARACTERIZATION OF NEGATIVELY CURVED LOCALLY SYMMETRIC SPACES

URSULA HAMENSTÄDT

Introduction

Let M be a compact connected Riemannian manifold of nonpositive sectional curvature. In [1]-[3] the rank of M is defined as follows: For $v \in T^1 M$ let the rank of v be the dimension of the vector space of parallel Jacobi fields along the geodesic γ_v with initial velocity v, and let rank(M)be the infimum of the rank of the elements of $T^1 M$. Ballmann, Brin, Eberlein, and Spatzier showed [1]-[3] (compare also [5], [6]) that if M is irreducible (i.e., the de Rham decomposition of the universal covering of M is trivial), and rank $(M) \ge 2$, then M is locally symmetric of higher rank.

As the rank of M measures its flatness, we can define a notion of rank for general manifolds of nonpositive curvature which measures the distribution of the curvature maximum in the following way: Let $-a^2 \leq 0$ be the maximum of the curvature of M. For an element v of the unit tangent bundle T^1M of M define the hyperbolic rank of v to be the dimension of the vector space of parallel vector fields J along the geodesic γ_v with initial velocity $\gamma'_v(0) = v$ with the following properties:

(1) J is orthogonal to the tangent of γ_v .

(2) For every $t \in \mathbf{R}$ the curvature of the plane spanned by $\gamma'_v(t)$ and J(t) equals $-a^2$.

Let the hyperbolic rank h-rank(M) of M be the minimum of the hyperbolic ranks of the vectors $v \in T^1M$. It is not difficult to see that $\operatorname{rank}(M) = h\operatorname{-rank}(M) + 1$ for manifolds with curvature maximum 0.

With this notion of rank the result of Ballmann, Brin, Eberlein, and Spatzier holds for every manifold of nonpositive curvature:

Theorem. If h-rank(M) > 0 and M is irreducible, then M is locally symmetric.

Received March 27, 1990.