THE LOCAL BEHAVIOUR OF HOLOMORPHIC CURVES IN ALMOST COMPLEX 4-MANIFOLDS

DUSA McDUFF

Abstract

In this paper we prove various results about the positivity of intersections of holomorphic curves in almost complex 4-manifolds which were stated by Gromov. We also show that the virtual genus of any closed holomorphic curve in an almost complex 4-manifold is nonnegative. These technical results form the basis of the classification of rational and ruled symplectic 4-manifolds given in [5].

1. Introduction

Let (V, J) be an almost complex manifold, and let (Σ, J_0) be a Riemann surface. A (parametrized) *J*-holomorphic curve in (V, J) is a map $f: \Sigma \to V$ which preserves the almost complex structures, i.e., $df \circ J_0 = J \circ df$. The unparametrized curve Im f is denoted by C. We will consider both local and global questions. In the former case, C will be the image of a disc D centered at the origin in the complex plane \mathbb{C} , and in the latter it will be closed, i.e., the image of a compact Riemann surface Σ without boundary. Throughout, we will assume that (V, J)and all maps are C^{∞} -smooth, unless there is explicit mention to the contrary. Further, we will assume that f is not a multiple covering, i.e., that f does not factor as $f' \circ \gamma$, where $\gamma: \Sigma \to \Sigma$ is a J_0 -holomorphic self-map of degree > 1.

Our first aim is to prove the following result, which was stated by Gromov in $[3, 2.1.C_2]$.

Theorem 1.1. Two closed distinct J-holomorphic curves C and C' in an almost complex 4-manifold (V, J) have only a finite number of intersection points. Each such point x contributes a number $k_x \ge 1$ to the algebraic intersection number $C \cdot C'$. Moreover, $k_x = 1$ only if the curves C and C' intersect transversally at x.

Received December 1, 1989 and, in revised form, July 16, 1990. The author was partially supported by National Science Foundation grant #DMS 8803056.