SURFACES AND BRANCHED SURFACES
TRANSVERSE TO PSEUDO-ANOSOV FLOWS
ON 3-MANIFOLDS

LEE MOSHER

Abstract
Given a circular pseudo-Anosov flow \(\varphi \) on an irreducible, atoroidal 3-manifold \(M \), we classify all closed surfaces in \(M \) which are transverse and "almost transverse" to \(\varphi \), generalizing the Schwartzmann-Fried classification of cross-sections to \(\varphi \). In particular, there exists an "almost transverse" surface representing any class in \(H_2(M; \mathbb{Z}) \) which is nonnegative on all homology directions of \(\varphi \). As an application, if \(\sigma \) is a fibered face of the unit ball of Thurston's polyhedral norm on \(H_2(M; \mathbb{R}) \), we give conditions under which Oertel's conjecture can be verified, that there exists a single taut branched surface in \(M \) carrying norm-minimizing representatives of every class in \(\text{Cone}(\sigma) \), and in particular carrying fiber representatives of every class in \(\text{int}(\text{Cone}(\sigma)) \).

0. Introduction
The study of fibrations of 3-dimensional manifolds over the circle gained great impetus with the introduction in [12] of Thurston's norm on the homology and cohomology of a 3-manifold. The norm \(x \) on \(H_2(M; \mathbb{R}) \) is defined in the following manner. Given \(\alpha \in H_2(M; \mathbb{Z}) \subset H_2(M; \mathbb{R}) \), \(x(\alpha) \) is defined as the infimum, over all embedded surfaces \(A \) representing \(\alpha \), of

\[
\chi_-(A) = -\chi(A - \text{spherical components of } A).
\]

\(x \) is then extended by homogeneity and continuity to all of \(H_2(M; \mathbb{R}) \). In general, \(x \) is only a seminorm, but if \(M \) has no nonseparating spheres or tori, and in particular when \(M \) is irreducible and atoroidal, then \(x \) is a norm. Thurston showed that the unit ball \(B_x = B_x(M) \) of \(x \) is always a polyhedron with integrally defined faces. Moreover, there is a certain collection of top-dimensional faces of \(B_x \), called the fibered faces, such that a class \(\alpha \in H_2(M; \mathbb{Z}) \subset H_2(M; \mathbb{R}) \) is represented by a fiber of some

Received November 9, 1988, and, in revised form, May 17, 1990. The author was funded by a National Science Foundation postdoctoral research fellowship.