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1. Introduction

This paper treats degenerate parabolic equations of second order

(1.1) ut + F{Vu, V2w) = 0

related to differential geometry, where V stands for spatial derivatives of
u = u(t, x) in x eRn , and ut represents the partial derivative of u in
time t. We are especially interested in the case when (1.1) is regarded as
an evolution equation for level surfaces of u. It turns out that (1.1) has
such a property if F has a scaling invariance

(1.2) F { λ p , λ X + σ p ® p ) = λ F ( p , X ) , λ > 0 , σ e R ,

for a nonzero p e Rn and a real symmetric matrix X, where Θ denotes
a tensor product of vectors in Rn . We say (1.1) is geometric if F satisfies
(1.2). A typical example is

(1.3) ut - \Vu\div(Vw/|Vκ|) = 0,

where Vu is the (spatial) gradiant of u. Here VM/|VW| is a unit normal
to a level surface of u, so div(Vw/|Vw|) is its mean curvature unless Vu
vanishes on the surface. Since ut/\Vu\ is a normal velocity of the level
surface, (1.3) implies that a level surface of solution u of (1.3) moves by
its mean curvature unless Vu vanishes on the surface. We thus call (1.3)
the mean curvature flow equation in this paper.

The motion of a closed (hyper)surface in Rn by its mean curvature has
been studied by many authors [1], [3], [4], [8], [10], [12], [14], [15]. Such
a motion is also important in the singular perturbation theory related to
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